The Importance of Phase to Texture Discrimination and Similarity

In this article, we investigate the importance of phase for texture discrimination and similarity estimation tasks. We first use two psychophysical experiments to investigate the relative importance of phase and magnitude spectra for human texture discrimination and similarity estimation. The result...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 27(2021), 9 vom: 18. Sept., Seite 3755-3768
1. Verfasser: Dong, Xinghui (VerfasserIn)
Weitere Verfasser: Gao, Ying, Dong, Junyu, Chantler, Mike J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM307783138
003 DE-627
005 20250226234211.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.2981063  |2 doi 
028 5 2 |a pubmed25n1025.xml 
035 |a (DE-627)NLM307783138 
035 |a (NLM)32191889 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Xinghui  |e verfasserin  |4 aut 
245 1 4 |a The Importance of Phase to Texture Discrimination and Similarity 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we investigate the importance of phase for texture discrimination and similarity estimation tasks. We first use two psychophysical experiments to investigate the relative importance of phase and magnitude spectra for human texture discrimination and similarity estimation. The results show that phase is more important to humans for both tasks. We further examine the ability of 51 computational feature sets to perform these two tasks. In contrast with the psychophysical experiments, it is observed that the magnitude data is more important to these computational feature sets than the phase data. We hypothesise that this inconsistency is due to the difference between the abilities of humans and the computational feature sets to utilise phase data. This motivates us to investigate the application of the 51 feature sets to phase-only images in addition to their use on the original data set. This investigation is extended to exploit Convolutional Neural Network (CNN) features. The results show that our feature fusion scheme improves the average performance of those feature sets for estimating humans' perceptual texture similarity. The superior performance should be attributed to the importance of phase to texture similarity 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Ying  |e verfasserin  |4 aut 
700 1 |a Dong, Junyu  |e verfasserin  |4 aut 
700 1 |a Chantler, Mike J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 27(2021), 9 vom: 18. Sept., Seite 3755-3768  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:27  |g year:2021  |g number:9  |g day:18  |g month:09  |g pages:3755-3768 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.2981063  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 9  |b 18  |c 09  |h 3755-3768