Small Object Augmentation of Urban Scenes for Real-Time Semantic Segmentation

Semantic segmentation is a key step in scene understanding for autonomous driving. Although deep learning has significantly improved the segmentation accuracy, current highquality models such as PSPNet and DeepLabV3 are inefficient given their complex architectures and reliance on multi-scale inputs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 18. März
1. Verfasser: Yang, Zhengeng (VerfasserIn)
Weitere Verfasser: Yu, Hongshan, Feng, Mingtao, Sun, Wei, Lin, Xuefei, Sun, Mingui, Mao, Zhi-Hong, Mian, Ajmal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM307783103
003 DE-627
005 20250226234210.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2976856  |2 doi 
028 5 2 |a pubmed25n1025.xml 
035 |a (DE-627)NLM307783103 
035 |a (NLM)32191886 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Zhengeng  |e verfasserin  |4 aut 
245 1 0 |a Small Object Augmentation of Urban Scenes for Real-Time Semantic Segmentation 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Semantic segmentation is a key step in scene understanding for autonomous driving. Although deep learning has significantly improved the segmentation accuracy, current highquality models such as PSPNet and DeepLabV3 are inefficient given their complex architectures and reliance on multi-scale inputs. Thus, it is difficult to apply them to real-time or practical applications. On the other hand, existing real-time methods cannot yet produce satisfactory results on small objects such as traffic lights, which are imperative to safe autonomous driving. In this paper, we improve the performance of real-time semantic segmentation from two perspectives, methodology and data. Specifically, we propose a real-time segmentation model coined Narrow Deep Network (NDNet) and build a synthetic dataset by inserting additional small objects into the training images. The proposed method achieves 65.7% mean intersection over union (mIoU) on the Cityscapes test set with only 8.4G floatingpoint operations (FLOPs) on 1024×2048 inputs. Furthermore, by re-training the existing PSPNet and DeepLabV3 models on our synthetic dataset, we obtained an average 2% mIoU improvement on small objects 
650 4 |a Journal Article 
700 1 |a Yu, Hongshan  |e verfasserin  |4 aut 
700 1 |a Feng, Mingtao  |e verfasserin  |4 aut 
700 1 |a Sun, Wei  |e verfasserin  |4 aut 
700 1 |a Lin, Xuefei  |e verfasserin  |4 aut 
700 1 |a Sun, Mingui  |e verfasserin  |4 aut 
700 1 |a Mao, Zhi-Hong  |e verfasserin  |4 aut 
700 1 |a Mian, Ajmal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 18. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2020  |g day:18  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2976856  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 18  |c 03