Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards

The current study validated a mechanistic model for Botrytis cinerea on grapevine with data from 23 independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model was operated for each vineyard by using wea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 104(2020), 5 vom: 03. Mai, Seite 1291-1297
1. Verfasser: Fedele, Giorgia (VerfasserIn)
Weitere Verfasser: González-Domínguez, Elisa, Delière, Laurent, Díez-Navajas, Ana M, Rossi, Vittorio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Botrytis cinerea latency mechanistic model validation
LEADER 01000naa a22002652 4500
001 NLM307779874
003 DE-627
005 20231225130318.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-11-19-2309-RE  |2 doi 
028 5 2 |a pubmed24n1025.xml 
035 |a (DE-627)NLM307779874 
035 |a (NLM)32191557 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fedele, Giorgia  |e verfasserin  |4 aut 
245 1 0 |a Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.05.2020 
500 |a Date Revised 05.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The current study validated a mechanistic model for Botrytis cinerea on grapevine with data from 23 independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model was operated for each vineyard by using weather data and vine growth stages to anticipate, at any day of the vine-growing season, the disease severity (DS) at harvest (severe, DS ≥ 15%; intermediate, 5 < DS < 15%; and mild, DS ≤ 5%). To determine the ability of the model to account for latent infections, postharvest incubation assays were also conducted using mature berries without symptoms or signs of BBR. The model correctly classified the severity of 15 of 23 epidemics (65% of epidemics) when the classification was based on field assessments of BBR severity; when the model was operated to include BBR severity after incubation assays, its ability to correctly predict BBR severity increased from 65% to >87%. This result showed that the model correctly accounts for latent infections, which is important because latent infections can substantially increase DS. The model was sensitive and specific, with the false-positive and false-negative proportion of model predictions equal to 0.24 and 0, respectively. Therefore, the model may be considered a reliable tool for decision-making for BBR control in vineyards 
650 4 |a Journal Article 
650 4 |a Botrytis cinerea 
650 4 |a latency 
650 4 |a mechanistic model 
650 4 |a validation 
700 1 |a González-Domínguez, Elisa  |e verfasserin  |4 aut 
700 1 |a Delière, Laurent  |e verfasserin  |4 aut 
700 1 |a Díez-Navajas, Ana M  |e verfasserin  |4 aut 
700 1 |a Rossi, Vittorio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 104(2020), 5 vom: 03. Mai, Seite 1291-1297  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:104  |g year:2020  |g number:5  |g day:03  |g month:05  |g pages:1291-1297 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-11-19-2309-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 104  |j 2020  |e 5  |b 03  |c 05  |h 1291-1297