An agent-based framework for improving wildlife disease surveillance : A case study of chronic wasting disease in Missouri white-tailed deer

Epidemiological surveillance for important wildlife diseases often relies on samples obtained from hunter-harvested animals. A problem, however, is that although convenient and cost-effective, hunter-harvest samples are not representative of the population due to heterogeneities in disease distribut...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling. - 1980. - 417(2020) vom: 01. Feb.
1. Verfasser: Belsare, Aniruddha V (VerfasserIn)
Weitere Verfasser: Gompper, Matthew E, Keller, Barbara, Sumners, Jason, Hansen, Lonnie, Millspaugh, Joshua J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ecological modelling
Schlagworte:Journal Article Agent-based models Chronic wasting disease Sample size Surveillance White-tailed deer Wildlife diseases
LEADER 01000naa a22002652 4500
001 NLM307762815
003 DE-627
005 20231225130255.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ecolmodel.2019.108919  |2 doi 
028 5 2 |a pubmed24n1025.xml 
035 |a (DE-627)NLM307762815 
035 |a (NLM)32189826 
035 |a (PII)108919 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Belsare, Aniruddha V  |e verfasserin  |4 aut 
245 1 3 |a An agent-based framework for improving wildlife disease surveillance  |b A case study of chronic wasting disease in Missouri white-tailed deer 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Epidemiological surveillance for important wildlife diseases often relies on samples obtained from hunter-harvested animals. A problem, however, is that although convenient and cost-effective, hunter-harvest samples are not representative of the population due to heterogeneities in disease distribution and biased sampling. We developed an agent-based modeling framework that i) simulates a deer population in a user-generated landscape, and ii) uses a snapshot of the in silico deer population to simulate disease prevalence and distribution, harvest effort and sampling as per user-specified parameters. This framework can incorporate real-world heterogeneities in disease distribution, hunter harvest and harvest-based sampling, and therefore can be useful in informing wildlife disease surveillance strategies, specifically to determine population-specific sample sizes necessary for prompt detection of disease. Application of this framework is illustrated using the example of chronic wasting disease (CWD) surveillance in Missouri's white-tailed deer (Odocoileus virginianus) population. We show how confidence in detecting CWD is grossly overestimated under the unrealistic, but standard, assumptions that sampling effort and disease are randomly and independently distributed. We then provide adjusted sample size recommendations based on more realistic assumptions. Wildlife agencies can use these open-access models to design their CWD surveillance. Furthermore, these models can be readily adapted to other regions and other wildlife disease systems 
650 4 |a Journal Article 
650 4 |a Agent-based models 
650 4 |a Chronic wasting disease 
650 4 |a Sample size 
650 4 |a Surveillance 
650 4 |a White-tailed deer 
650 4 |a Wildlife diseases 
700 1 |a Gompper, Matthew E  |e verfasserin  |4 aut 
700 1 |a Keller, Barbara  |e verfasserin  |4 aut 
700 1 |a Sumners, Jason  |e verfasserin  |4 aut 
700 1 |a Hansen, Lonnie  |e verfasserin  |4 aut 
700 1 |a Millspaugh, Joshua J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecological modelling  |d 1980  |g 417(2020) vom: 01. Feb.  |w (DE-627)NLM09818251X  |x 0304-3800  |7 nnns 
773 1 8 |g volume:417  |g year:2020  |g day:01  |g month:02 
856 4 0 |u http://dx.doi.org/10.1016/j.ecolmodel.2019.108919  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 417  |j 2020  |b 01  |c 02