Effect of Laser Irradiation on Reversibility and Drug Release of Light-Activatable Drug-Encapsulated Liposomes
Although several studies have demonstrated repetitive drug release using light-activatable liposomes, inconsistent drug release at each activation limits widespread usage. Here, we report reversible plasmonic material-coated encapsulated liposomes for proportional controlled delivery of methotrexate...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 13 vom: 07. Apr., Seite 3573-3582 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Liposomes Gold 7440-57-5 |
Zusammenfassung: | Although several studies have demonstrated repetitive drug release using light-activatable liposomes, inconsistent drug release at each activation limits widespread usage. Here, we report reversible plasmonic material-coated encapsulated liposomes for proportional controlled delivery of methotrexate (MTX), which is a common drug for cancer and autoimmune diseases, using repetitive laser irradiation. Our results suggest a proportional increase in total drug release after repetitive laser irradiation. We hypothesize that the drug is released via "melted" lipid bilayers when the plasmonic materials on the liposome surface are heated by laser irradiation followed by reversible formation of the liposome. To evaluate our hypothesis, the number density of liposomes after laser irradiation was measured using single-particle (liposome) collision experiments at an ultramicroelectrode. Collisional frequency data suggest that the number density of liposomes remains unaltered even after 60 s of laser irradiation at 1.1 and 1.8 W, indicating that the liposome structure is reversible. The results were further compared with gold nanorod-coated nanodroplets where drug is released via irreversible phase transition. In contrast to what was observed with the liposome particles, the number density of the nanodroplets decreased with increasing laser irradiation duration. The structure reversibility of our liposome particles may be responsible for repetitive drug release with laser heating. We also studied the temperature rise in the lipid bilayer by incorporating polymerized 10,12-pentacosadiynoic acid (PCDA) in the lipid composition. The red shift in the UV-vis spectrum due to the structural change in PCDA lipids after laser irradiation indicates a rise in temperature above 75 °C, which is also above the chain-melting temperature of the main lipid used in the liposomes. All these results indicate that drug is released from the light-activatable liposomes due to reversible nanostructural alteration in the lipid bilayer by plasmonic resonance heating. The liposomes have potential to be a drug carrier for dose-controlled repetitive drug delivery |
---|---|
Beschreibung: | Date Completed 26.05.2021 Date Revised 26.05.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c00215 |