Mutations in the predicted DNA polymerase subunit POLD3 result in more rapid flowering of Brachypodium distachyon
© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 227(2020), 6 vom: 01. Sept., Seite 1725-1735 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Brachypodium distachyon DNA polymerase POLD3 flowering grasses Plant Proteins DNA Polymerase III |
Zusammenfassung: | © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants |
---|---|
Beschreibung: | Date Completed 14.05.2021 Date Revised 31.05.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.16546 |