Reversible-Tuning Krafft Temperature of Selenium-Containing Ionic Surfactants by Redox Chemistry

An easy, effective, and reversible strategy for tuning the Krafft temperature (KT) of selenium-containing ionic surfactants, with head groups ranging in nature from anionic to amphoteric, has been achieved for the first time via the redox chemistry of selenium. After oxidation with H2O2, the selenid...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 13 vom: 07. Apr., Seite 3514-3521
1. Verfasser: Fan, Ye (VerfasserIn)
Weitere Verfasser: Cai, Shuang, Xu, Dekun, Sun, Qin, Liu, Xuefeng, Zhang, Yongmin, Fang, Yinjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:An easy, effective, and reversible strategy for tuning the Krafft temperature (KT) of selenium-containing ionic surfactants, with head groups ranging in nature from anionic to amphoteric, has been achieved for the first time via the redox chemistry of selenium. After oxidation with H2O2, the selenide group was converted to a more hydrophilic selenoxide group. This made the oxidized forms of the surfactants more water-soluble, which results in a marked reduction in the KT. In contrast, the hydrophilic selenoxide was restored to its reduced form of selenide via reduction reaction, which allowed the KT value to return to its initial value. By alternating the oxidization and reduction treatments, the KT of the selenium-containing surfactants in this work could be reversibly switched over 5-10 cycles without causing obvious adverse distortions
Beschreibung:Date Revised 07.04.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b03747