Image Denoising via Sequential Ensemble Learning

Image denoising is about removing measurement noise from input image for better signal-to-noise ratio. In recent years, there has been great progress on the development of data-driven approaches for image denoising, which introduce various techniques and paradigms from machine learning in the design...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 11. März
1. Verfasser: Yang, Xuhui (VerfasserIn)
Weitere Verfasser: Xu, Yong, Quan, Yuhui, Ji, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307559955
003 DE-627
005 20240229162646.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2978645  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM307559955 
035 |a (NLM)32167898 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Xuhui  |e verfasserin  |4 aut 
245 1 0 |a Image Denoising via Sequential Ensemble Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Image denoising is about removing measurement noise from input image for better signal-to-noise ratio. In recent years, there has been great progress on the development of data-driven approaches for image denoising, which introduce various techniques and paradigms from machine learning in the design of image denoisers. This paper aims at investigating the application of ensemble learning in image denoising, which combines a set of simple base denoisers to form a more effective image denoiser. Based on different types of image priors, two types of base denoisers in the form of transform-shrinkage are proposed for constructing the ensemble. Then, with an effective re-sampling scheme, several ensemble-learning-based image denoisers are constructed using different sequential combinations of multiple proposed base denoisers. The experiments showed that sequential ensemble learning can effectively boost the performance of image denoising 
650 4 |a Journal Article 
700 1 |a Xu, Yong  |e verfasserin  |4 aut 
700 1 |a Quan, Yuhui  |e verfasserin  |4 aut 
700 1 |a Ji, Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 11. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:11  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2978645  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 11  |c 03