STAR : A Structure and Texture Aware Retinex Model

Retinex theory is developed mainly to decompose an image into the illumination and reflectance components by analyzing local image derivatives. In this theory, larger derivatives are attributed to the changes in reflectance, while smaller derivatives are emerged in the smooth illumination. In this p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 11. März
1. Verfasser: Xu, Jun (VerfasserIn)
Weitere Verfasser: Hou, Yingkun, Ren, Dongwei, Liu, Li, Zhu, Fan, Yu, Mengyang, Wang, Haoqian, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307559890
003 DE-627
005 20240229162645.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2974060  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM307559890 
035 |a (NLM)32167892 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Jun  |e verfasserin  |4 aut 
245 1 0 |a STAR  |b A Structure and Texture Aware Retinex Model 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Retinex theory is developed mainly to decompose an image into the illumination and reflectance components by analyzing local image derivatives. In this theory, larger derivatives are attributed to the changes in reflectance, while smaller derivatives are emerged in the smooth illumination. In this paper, we utilize exponentiated local derivatives (with an exponent γ) of an observed image to generate its structure map and texture map. The structure map is produced by been amplified with γ > 1, while the texture map is generated by been shrank with γ < 1. To this end, we design exponential filters for the local derivatives, and present their capability on extracting accurate structure and texture maps, influenced by the choices of exponents γ. The extracted structure and texture maps are employed to regularize the illumination and reflectance components in Retinex decomposition. A novel Structure and Texture Aware Retinex (STAR) model is further proposed for illumination and reflectance decomposition of a single image. We solve the STAR model by an alternating optimization algorithm. Each sub-problem is transformed into a vectorized least squares regression, with closed-form solutions. Comprehensive experiments on commonly tested datasets demonstrate that, the proposed STAR model produce better quantitative and qualitative performance than previous competing methods, on illumination and reflectance decomposition, low-light image enhancement, and color correction. The code is publicly available at https://github.com/csjunxu/STAR 
650 4 |a Journal Article 
700 1 |a Hou, Yingkun  |e verfasserin  |4 aut 
700 1 |a Ren, Dongwei  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Yu, Mengyang  |e verfasserin  |4 aut 
700 1 |a Wang, Haoqian  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 11. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:11  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2974060  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 11  |c 03