|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM307509133 |
003 |
DE-627 |
005 |
20231225125724.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202000505
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1025.xml
|
035 |
|
|
|a (DE-627)NLM307509133
|
035 |
|
|
|a (NLM)32162736
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Yuan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Pitch-Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Potassium ion batteries (KIBs) have emerged as a promising energy storage system, but the stability and high rate capability of their electrode materials, particularly carbon as the most investigated anode ones, become a primary challenge. Here, it is identified that pitch-derived soft carbon, a nongraphitic carbonaceous species which is paid less attention in the battery field, holds special advantage in KIB anodes. The structural flexibility of soft carbon makes it convenient to tune its crystallization degree, thereby modulating the storage behavior of large-sized K+ in the turbostratic carbon lattices to satisfy the need in structural resilience, low-voltage feature, and high transportation kinetics. It is confirmed that a simple thermal control can produce structurally optimized soft carbon that has much better battery performance than its widely reported carbon counterparts such as graphite and hard carbon. The findings highlight the potential of soft carbon as an interesting category suitable for high-performance KIB electrode and provide insights for understanding the complicated K+ storage mechanisms in KIBs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anode materials
|
650 |
|
4 |
|a long cycle stability
|
650 |
|
4 |
|a potassium ion batteries
|
650 |
|
4 |
|a soft carbon
|
650 |
|
4 |
|a turbostratic lattice
|
700 |
1 |
|
|a Lu, Ya-Xiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yan-Song
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meng, Qing-Shi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Jing-Chi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yong-Gang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yong-Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Bao-Bao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Chun-Tai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, An-Min
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 17 vom: 03. Apr., Seite e2000505
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:17
|g day:03
|g month:04
|g pages:e2000505
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202000505
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 17
|b 03
|c 04
|h e2000505
|