Sulfur Loading and Speciation Control the Hydrophobicity, Electron Transfer, Reactivity, and Selectivity of Sulfidized Nanoscale Zerovalent Iron

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 17 vom: 20. Apr., Seite e1906910
1. Verfasser: Xu, Jiang (VerfasserIn)
Weitere Verfasser: Avellan, Astrid, Li, Hao, Liu, Xitong, Noël, Vincent, Lou, Zimo, Wang, Yan, Kaegi, Rälf, Henkelman, Graeme, Lowry, Gregory V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article environmental nanotechnology groundwater remediation rational design sulfidized nanoscale zerovalent iron sulfur speciation
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sulfidized nanoscale zerovalent iron (SNZVI) is a promising material for groundwater remediation. However, the relationships between sulfur content and speciation and the properties of SNZVI materials are unknown, preventing rational design. Here, the effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined. Sulfur incorporation extended the nano-Fe0 BCC lattice parameter, reduced the Fe local vacancies, and lowered the resistance to electron transfer. Impacts of the main sulfur species (FeS and FeS2 ) on hydrophobicity (water contact angles) are consistent with density functional theory calculations for these FeSx phases. These properties well explain the reactivity and selectivity of SNZVI during the reductive dechlorination of trichloroethylene (TCE), a hydrophobic groundwater contaminant. Controlling the amount and speciation of sulfur in the SNZVI made it highly reactive (up to 0.41 L m-2 d-1 ) and selective for TCE degradation over water (up to 240 moles TCE per mole H2 O), with an electron efficiency of up to 70%, and these values are 54-fold, 98-fold, and 160-fold higher than for NZVI, respectively. These findings can guide the rational design of robust SNZVI with properties tailored for specific application scenarios
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201906910