|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM307475018 |
003 |
DE-627 |
005 |
20231225125637.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201907975
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1024.xml
|
035 |
|
|
|a (DE-627)NLM307475018
|
035 |
|
|
|a (NLM)32159267
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Yang
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Scalable Nickel-Cellulose Hybrid Metamaterial with Broadband Light Absorption for Efficient Solar Distillation
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Sophisticated metastructures are usually required to broaden the inherently narrowband plasmonic absorption of light for applications such as solar desalination, photodetection, and thermoelectrics. Here, nonresonant nickel nanoparticles (diameters < 20 nm) are embedded into cellulose microfibers via a nanoconfinement effect, producing an intrinsically broadband metamaterial with 97.1% solar-weighted absorption. Interband transitions rather than plasmonic resonance dominate the optical absorption throughout the solar spectrum due to a high density of electronic states near the Fermi level of nickel. Field solar purification of sewage and seawater based on the metamaterial demonstrates high solar-to-water efficiencies of 47.9-65.8%. More importantly, the solution-processed metamaterial is mass-producible (1.8 × 0.3 m2 ), low-cost, flexible, and durable (even effective after 7 h boiling in water), which are critical to the commercialization of portable solar-desalination and domestic-water-purification devices. This work also broadens material choices beyond plasmonic metals for the light absorption in photothermal and photocatalytic applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a broadband absorbers
|
650 |
|
4 |
|a hybrid metamaterials
|
650 |
|
4 |
|a nanoconfinement synthesis
|
650 |
|
4 |
|a solar energy
|
650 |
|
4 |
|a water treatment
|
700 |
1 |
|
|a Dong, Changlin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Jiajun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qinglei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Chenxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Guofen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Wenshu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Lulu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Di
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 17 vom: 01. Apr., Seite e1907975
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:17
|g day:01
|g month:04
|g pages:e1907975
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201907975
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 17
|b 01
|c 04
|h e1907975
|