AtHSPR is involved in GA- and light intensity-mediated control of flowering time and seed set in Arabidopsis

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 12 vom: 22. Juni, Seite 3543-3559
1. Verfasser: Yang, Tao (VerfasserIn)
Weitere Verfasser: Sun, Yan, Wang, Yongli, Zhou, Lina, Chen, Mengya, Bian, Zhiyuan, Lian, Yuke, Xuan, Lijuan, Yuan, Guoqiang, Wang, Xinyu, Wang, Chongying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana AtHSPR flowering time gibberellin light intensity seed set Arabidopsis Proteins Gibberellins mehr... Heat-Shock Proteins Homeodomain Proteins KNAT5 protein, Arabidopsis Transcription Factors
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Flowering is a dynamic and synchronized process, the timing of which is finely tuned by various environmental signals. A T-DNA insertion mutant in Arabidopsis HEAT SHOCK PROTEIN-RELATED (AtHSPR) exhibited late-flowering phenotypes under both long-day (LD) and short-day (SD) conditions compared to the wild-type, while over-expression of AtHSPR promoted flowering. Exogenous application of gibberellin (GA) partially rescued the late-flowering mutant phenotype under both LD and SD conditions, suggesting that AtHSPR is involved in GA biosynthesis and/or the GA signaling that promotes flowering. Under SD or low-light conditions, the Athspr mutant exhibited late flowering together with reduced pollen viability and seed set, defective phenotypes that were partially rescued by GA treatment. qRT-PCR assays confirmed that GA biosynthetic genes were down-regulated, that GA catabolic genes were up-regulated, and that the levels of bioactive GA and its intermediates were decreased in Athspr under both SD and low-light/LD, further suggesting that AtHSPR could be involved in the GA pathway under SD and low-light conditions. Furthermore, AtHSPR interacted in vitro with OFP1 and KNAT5, which are transcriptional repressors of GA20ox1 in GA biosynthesis. Taken together, our findings demonstrate that AtHSPR plays a positive role in GA- and light intensity-mediated regulation of flowering and seed set
Beschreibung:Date Completed 14.05.2021
Date Revised 31.05.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa128