Unique lignin modifications pattern the nucleation of silica in sorghum endodermis

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 21 vom: 02. Dez., Seite 6818-6829
1. Verfasser: Zexer, Nerya (VerfasserIn)
Weitere Verfasser: Elbaum, Rivka
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Sorghum bicolor Endodermis lignin root silica silicic acid silicon Silicon Dioxide mehr... 7631-86-9 Lignin 9005-53-2
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Silicon dioxide in the form of hydrated silica is a component of plant tissues that can constitute several percent by dry weight in certain taxa. Nonetheless, the mechanism of plant silica formation is mostly unknown. Silicon (Si) is taken up from the soil by roots in the form of monosilicic acid molecules. The silicic acid is carried in the xylem and subsequently polymerizes in target sites to silica. In roots of sorghum (Sorghum bicolor), silica aggregates form in an orderly pattern along the inner tangential cell walls of endodermis cells. Using Raman microspectroscopy, autofluorescence, and scanning electron microscopy, we investigated the structure and composition of developing aggregates in roots of sorghum seedlings. Putative silica aggregation loci were identified in roots grown under Si starvation. These micrometer-scale spots were constructed of tightly packed modified lignin, and nucleated trace concentrations of silicic acid. Substantial variation in cell wall autofluorescence between Si+ and Si- roots demonstrated the impact of Si on cell wall chemistry. We propose that in Si- roots, the modified lignin cross-linked into the cell wall and lost its ability to nucleate silica. In Si+ roots, silica polymerized on the modified lignin and altered its structure. Our work demonstrates a high degree of control over lignin and silica deposition in cell walls
Beschreibung:Date Completed 14.05.2021
Date Revised 30.03.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa127