Phosphate removal from water using alginate/carboxymethylcellulose/aluminum beads and plaster of paris

© 2020 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 92(2020), 9 vom: 05. Sept., Seite 1255-1267
1. Verfasser: Malicevic, Srdjan (VerfasserIn)
Weitere Verfasser: Garcia Pacheco, Ana Paula, Lamont, Kristine, Estepa, Klaudine Monica, Daguppati, Prasad, van de Vegte, John, Marangoni, Alejandro G, Pensini, Erica
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article alginate aluminum carboxymethylcellulose phosphorus plaster of paris sorbents Alginates Phosphates Water Pollutants, Chemical mehr... Water 059QF0KO0R Aluminum CPD4NFA903 Carboxymethylcellulose Sodium K679OBS311 Calcium Sulfate WAT0DDB505
LEADER 01000naa a22002652 4500
001 NLM307413942
003 DE-627
005 20231225125517.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.1321  |2 doi 
028 5 2 |a pubmed24n1024.xml 
035 |a (DE-627)NLM307413942 
035 |a (NLM)32153084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Malicevic, Srdjan  |e verfasserin  |4 aut 
245 1 0 |a Phosphate removal from water using alginate/carboxymethylcellulose/aluminum beads and plaster of paris 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.12.2020 
500 |a Date Revised 14.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 Water Environment Federation. 
520 |a Phosphorus released in lakes due to agricultural water runoff causes eutrophication, deteriorating water quality and harming ecosystems. Two adsorbents were studied for the removal of phosphate from water: plaster of Paris powder and hydrogel beads produced using alginate, carboxymethylcellulose, and aluminum. The reaction kinetics, adsorption capacity, and ability to desorb were compared. Sorption of phosphate with either plaster of Paris or hydrogel beads was well described by the Langmuir model. In deionized water, hydrogel beads had a maximum sorption capacity of 90.5 mg  PO 4 3 - /g dry bead with an equilibration time of approximately 24 hr. Monovalent anions (e.g., chloride) did not affect phosphorus sorption onto hydrogel beads, whereas divalent anions (e.g., sulfate) hindered sorption. In deionized water, plaster of Paris (POP) powder has a maximum capacity of 1.52 mg  PO 4 3 - /g with an equilibrium time of less than 10 min. Sorbents can potentially be reused following phosphate desorption, and desorbed phosphate may be reused as fertilizer. At pH = 9.5, hydrogel beads desorbed up to 60% of the original amount of phosphate sorbed and lower amounts at lower pH. At pH = 2, POP powder desorbed only 35% of the initial phosphate sorbed, and desorption decreased with increasing pH. PRACTITIONER POINTS: The maximum sorption capacity of plaster of Paris is 1.52 mg  PO 4 3 - /g. The maximum sorption capacity of hydrogel beads is 90.5 mg  PO 4 3 - /g. Monovalent anions do not affect phosphorus sorption, and divalent anions hinder it by ≈36%. Sorption is well described by Langmuir isotherms (R2  > 0.98). Hydrogel beads desorb 60% of phosphorus at pH = 9, possibly allowing phosphorus reuse 
650 4 |a Journal Article 
650 4 |a alginate 
650 4 |a aluminum 
650 4 |a carboxymethylcellulose 
650 4 |a phosphorus 
650 4 |a plaster of paris 
650 4 |a sorbents 
650 7 |a Alginates  |2 NLM 
650 7 |a Phosphates  |2 NLM 
650 7 |a Water Pollutants, Chemical  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Aluminum  |2 NLM 
650 7 |a CPD4NFA903  |2 NLM 
650 7 |a Carboxymethylcellulose Sodium  |2 NLM 
650 7 |a K679OBS311  |2 NLM 
650 7 |a Calcium Sulfate  |2 NLM 
650 7 |a WAT0DDB505  |2 NLM 
700 1 |a Garcia Pacheco, Ana Paula  |e verfasserin  |4 aut 
700 1 |a Lamont, Kristine  |e verfasserin  |4 aut 
700 1 |a Estepa, Klaudine Monica  |e verfasserin  |4 aut 
700 1 |a Daguppati, Prasad  |e verfasserin  |4 aut 
700 1 |a van de Vegte, John  |e verfasserin  |4 aut 
700 1 |a Marangoni, Alejandro G  |e verfasserin  |4 aut 
700 1 |a Pensini, Erica  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 92(2020), 9 vom: 05. Sept., Seite 1255-1267  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:92  |g year:2020  |g number:9  |g day:05  |g month:09  |g pages:1255-1267 
856 4 0 |u http://dx.doi.org/10.1002/wer.1321  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 92  |j 2020  |e 9  |b 05  |c 09  |h 1255-1267