Blind Universal Bayesian Image Denoising with Gaussian Noise Level Learning

Blind and universal image denoising consists of using a unique model that denoises images with any level of noise. It is especially practical as noise levels do not need to be known when the model is developed or at test time. We propose a theoretically-grounded blind and universal deep learning ima...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 04. März
1. Verfasser: El Helou, Majed (VerfasserIn)
Weitere Verfasser: Susstrunk, Sabine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307380572
003 DE-627
005 20240229162636.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2976814  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM307380572 
035 |a (NLM)32149690 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a El Helou, Majed  |e verfasserin  |4 aut 
245 1 0 |a Blind Universal Bayesian Image Denoising with Gaussian Noise Level Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Blind and universal image denoising consists of using a unique model that denoises images with any level of noise. It is especially practical as noise levels do not need to be known when the model is developed or at test time. We propose a theoretically-grounded blind and universal deep learning image denoiser for additive Gaussian noise removal. Our network is based on an optimal denoising solution, which we call fusion denoising. It is derived theoretically with a Gaussian image prior assumption. Synthetic experiments show our network's generalization strength to unseen additive noise levels. We also adapt the fusion denoising network architecture for image denoising on real images. Our approach improves real-world grayscale additive image denoising PSNR results for training noise levels and further on noise levels not seen during training. It also improves state-of-the-art color image denoising performance on every single noise level, by an average of 0.1dB, whether trained on or not 
650 4 |a Journal Article 
700 1 |a Susstrunk, Sabine  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 04. März  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:04  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2976814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 04  |c 03