GLoG : Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data

Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as ma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 8 vom: 09. Aug., Seite 3481-3492
1. Verfasser: Nonato, Luis Gustavo (VerfasserIn)
Weitere Verfasser: do Carmo, Fabiano Petronetto, Silva, Claudio T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM307380076
003 DE-627
005 20231225125433.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.2978847  |2 doi 
028 5 2 |a pubmed24n1024.xml 
035 |a (DE-627)NLM307380076 
035 |a (NLM)32149640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nonato, Luis Gustavo  |e verfasserin  |4 aut 
245 1 0 |a GLoG  |b Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing. The proposed filter is able to reveal interesting spatial patterns while still enabling the definition of entropy of time slices. The entropy reveals the degree of randomness of a time slice, helping users to identify expected and unexpected phenomena over time. The effectiveness of our approach appears in applications involving synthetic and real data sets, which show that the proposed methodology is able to uncover interesting spatial and temporal phenomena. The provided examples and case studies make clear the usefulness of our approach as a mechanism to support visual analytic tasks involving spatio-temporal data 
650 4 |a Journal Article 
700 1 |a do Carmo, Fabiano Petronetto  |e verfasserin  |4 aut 
700 1 |a Silva, Claudio T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 8 vom: 09. Aug., Seite 3481-3492  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:8  |g day:09  |g month:08  |g pages:3481-3492 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.2978847  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 8  |b 09  |c 08  |h 3481-3492