Hierarchical global plant biophysical regions as potential analysis units

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 6 vom: 22. Juni, Seite 3689-3697
1. Verfasser: Boone, Randall B (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article GIMMS NDVI analysis units clustering hierarchical phenology production
LEADER 01000naa a22002652 4500
001 NLM307335267
003 DE-627
005 20231225125335.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15070  |2 doi 
028 5 2 |a pubmed24n1024.xml 
035 |a (DE-627)NLM307335267 
035 |a (NLM)32145127 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Boone, Randall B  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical global plant biophysical regions as potential analysis units 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.09.2020 
500 |a Date Revised 15.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Regional and global vegetation simulations can be problematic when analysis units to which parameters are assigned do not align with plant productivity and phenology. Having a suite of predefined biophysical regions at a variety of scales that correspond to differences in plant productivity and phenology would allow analysts to select a set of analysis units at the scale needed. In other cases, environmental or social responses may be hypothesized to be related to differences in plant dynamics. One may compare the discrimination in such data that biophysical regions at different scales provide to determine which best distinguishes the responses in question, such that like responses fall within the same regions to the degree possible. If those relationships are significant, the responses may then be extrapolated based on the biophysical regions. I defined hierarchical biophysical regions based on plant productivity and phenology by clustering global 0.083 degree resolution normalized difference vegetation indices (NDVI) over a 10 year period. Agglomerative average-linkage distances based on squared error between clusters were conducted using an iterative sampling approach to merge more than 2 million clusters into fewer and fewer clusters based on NDVI greenness profiles comprised of 240 values over 10 years, until all cells were in a single cluster. Greater and greater differences in greenness profiles were ignored at higher levels of the hierarchy. Using a difference increment of 0.1, 253 non-duplicative sets of clusters were created, and 107 of those were included in animations that may be used to explore differences in global plant dynamics. Differences in clusters were quantified based on comparing the focal set of cluster results with 10 other cluster sets. Analysts may use the hierarchical clusters to improve the alignment of their parameter sets that inform plant growth and other dynamics with real-world plant dynamics 
650 4 |a Journal Article 
650 4 |a GIMMS 
650 4 |a NDVI 
650 4 |a analysis units 
650 4 |a clustering 
650 4 |a hierarchical 
650 4 |a phenology 
650 4 |a production 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 6 vom: 22. Juni, Seite 3689-3697  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:6  |g day:22  |g month:06  |g pages:3689-3697 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15070  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 6  |b 22  |c 06  |h 3689-3697