Fusion of Magnetic Resonance and Ultrasound Images for Endometriosis Detection

This paper introduces a new fusion method for magnetic resonance (MR) and ultrasound (US) images, which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial resolution for the US image. The proposed algorithm is based on t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 28. Feb.
1. Verfasser: El Mansouri, Oumaima (VerfasserIn)
Weitere Verfasser: Vidal, Fabien, Basarab, Adrian, Payoux, Pierre, Kouame, Denis, Tourneret, Jean-Yves
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper introduces a new fusion method for magnetic resonance (MR) and ultrasound (US) images, which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial resolution for the US image. The proposed algorithm is based on two inverse problems, performing a super-resolution of the MR image and a denoising of the US image. A polynomial function is introduced to model the relationships between the gray levels of the two modalities. The resulting inverse problem is solved using a proximal alternating linearized minimization framework. The accuracy and the interest of the fusion algorithm are shown quantitatively and qualitatively via evaluations on synthetic and experimental phantom data
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2020.2975977