Highly Stable Phosphonate-Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 16 vom: 18. Apr., Seite e1906368
1. Verfasser: Zhu, Yun-Pei (VerfasserIn)
Weitere Verfasser: Yin, Jun, Abou-Hamad, Edy, Liu, Xiaokang, Chen, Wei, Yao, Tao, Mohammed, Omar F, Alshareef, Husam N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bandgap engineering hydrogen evolution metal-organic frameworks (MOFs) photocatalysis
LEADER 01000naa a22002652 4500
001 NLM307212211
003 DE-627
005 20231225125053.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201906368  |2 doi 
028 5 2 |a pubmed24n1024.xml 
035 |a (DE-627)NLM307212211 
035 |a (NLM)32129916 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Yun-Pei  |e verfasserin  |4 aut 
245 1 0 |a Highly Stable Phosphonate-Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts 
650 4 |a Journal Article 
650 4 |a bandgap engineering 
650 4 |a hydrogen evolution 
650 4 |a metal-organic frameworks (MOFs) 
650 4 |a photocatalysis 
700 1 |a Yin, Jun  |e verfasserin  |4 aut 
700 1 |a Abou-Hamad, Edy  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaokang  |e verfasserin  |4 aut 
700 1 |a Chen, Wei  |e verfasserin  |4 aut 
700 1 |a Yao, Tao  |e verfasserin  |4 aut 
700 1 |a Mohammed, Omar F  |e verfasserin  |4 aut 
700 1 |a Alshareef, Husam N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 16 vom: 18. Apr., Seite e1906368  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:16  |g day:18  |g month:04  |g pages:e1906368 
856 4 0 |u http://dx.doi.org/10.1002/adma.201906368  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 16  |b 18  |c 04  |h e1906368