Carrier Multiplication in PbS Quantum Dots Anchored on a Au Tip using Conductive Atomic Force Microscopy

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 17 vom: 05. Apr., Seite e1908461
1. Verfasser: Kim, Sung-Tae (VerfasserIn)
Weitere Verfasser: Kim, Ji-Hee, Lee, Young Hee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carrier multiplication conductive atomic force microscopy lead sulfide quantum dots photocurrent measurement
LEADER 01000caa a22002652c 4500
001 NLM307202275
003 DE-627
005 20250226211340.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201908461  |2 doi 
028 5 2 |a pubmed25n1023.xml 
035 |a (DE-627)NLM307202275 
035 |a (NLM)32128896 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Sung-Tae  |e verfasserin  |4 aut 
245 1 0 |a Carrier Multiplication in PbS Quantum Dots Anchored on a Au Tip using Conductive Atomic Force Microscopy 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Carrier multiplication (CM) is the amplification of the excited carrier density by two times or more when the incident photon energy is larger than twice the bandgap of semiconductors. A practical approach to demonstrate the CM involves the direct measurement of photocurrent in the device. Specifically, photocurrent measurement in quantum dots (QDs) is typically limited by high contact resistance and long carrier-transfer length, which yields a low CM conversion efficiency and high CM threshold energy. Here, the local photocurrent is measured to evaluate the CM quantum efficiency from a QD-attached Au tip of a conductive atomic force microscope (CAFM) system. The photocurrent is efficiently measured between the PbS QDs anchored on a Au tip and a graphene layer on a SiO2 /Si substrate as a counter electrode, yielding an extremely short channel length that reduces the contact resistance. The quantum efficiency extracted from the local photocurrent data with an incident photon energy exhibits a step-like behavior. More importantly, the CM threshold energy is as low as twice the bandgap, which is the lowest threshold energy of optically observed QDs to date. This enables the CAFM-based photocurrent technique to directly evaluate the CM conversion efficiency in low-dimensional materials 
650 4 |a Journal Article 
650 4 |a carrier multiplication 
650 4 |a conductive atomic force microscopy 
650 4 |a lead sulfide quantum dots 
650 4 |a photocurrent measurement 
700 1 |a Kim, Ji-Hee  |e verfasserin  |4 aut 
700 1 |a Lee, Young Hee  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 17 vom: 05. Apr., Seite e1908461  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:32  |g year:2020  |g number:17  |g day:05  |g month:04  |g pages:e1908461 
856 4 0 |u http://dx.doi.org/10.1002/adma.201908461  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 17  |b 05  |c 04  |h e1908461