Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO) : A relativistic density functional theory exploration

© 2020 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 15 vom: 05. Juni, Seite 1427-1435
1. Verfasser: Sadhu, Biswajit (VerfasserIn)
Weitere Verfasser: Dolg, Michael, Kulkarni, Mukund S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ETS-NOCV QTAIM actinide covalency decorporation agent density functional theory
LEADER 01000caa a22002652c 4500
001 NLM30716442X
003 DE-627
005 20250226210418.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26186  |2 doi 
028 5 2 |a pubmed25n1023.xml 
035 |a (DE-627)NLM30716442X 
035 |a (NLM)32125003 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sadhu, Biswajit  |e verfasserin  |4 aut 
245 1 0 |a Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO)  |b A relativistic density functional theory exploration 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.04.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals, Inc. 
520 |a A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide-ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide-ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+ . A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency 
650 4 |a Journal Article 
650 4 |a ETS-NOCV 
650 4 |a QTAIM 
650 4 |a actinide 
650 4 |a covalency 
650 4 |a decorporation agent 
650 4 |a density functional theory 
700 1 |a Dolg, Michael  |e verfasserin  |4 aut 
700 1 |a Kulkarni, Mukund S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 15 vom: 05. Juni, Seite 1427-1435  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:41  |g year:2020  |g number:15  |g day:05  |g month:06  |g pages:1427-1435 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26186  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 15  |b 05  |c 06  |h 1427-1435