The Structural Origins of Wood Cell Wall Toughness

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 16 vom: 12. Apr., Seite e1907693
1. Verfasser: Maaß, Mona-Christin (VerfasserIn)
Weitere Verfasser: Saleh, Salimeh, Militz, Holger, Volkert, Cynthia A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article fracture microfibril angle wood wood cell wall toughness
LEADER 01000naa a22002652 4500
001 NLM307079090
003 DE-627
005 20231225124756.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201907693  |2 doi 
028 5 2 |a pubmed24n1023.xml 
035 |a (DE-627)NLM307079090 
035 |a (NLM)32115772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maaß, Mona-Christin  |e verfasserin  |4 aut 
245 1 4 |a The Structural Origins of Wood Cell Wall Toughness 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.01.2021 
500 |a Date Revised 11.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The remarkable mechanical stability of wood is primarily attributed to the hierarchical fibrous arrangement of the polymeric components. While the mechanisms by which fibrous cell structure and cellulose microfibril arrangements lend stiffness and strength to wood have been intensively studied, the structural origins of the relatively high splitting fracture toughness remain unclear. This study relates cellulose microfibril arrangements to splitting fracture toughness in pine wood cell walls using in situ electron microscopy and reveals a previously unknown toughening mechanism: the specific arrangement of cellulose microfibrils in the cell wall deflects cracks from the S2 layer to the S1/S2 interface, and, once there, causes the crack to be repetitively arrested and shunted along the interface in a zig-zag path. It is suggested that this natural adaptation of wood to achieve tough interfaces and then deflect and trap cracks at them can be generalized to provide design guidelines to improve toughness of high-performance and renewable engineering materials 
650 4 |a Journal Article 
650 4 |a fracture 
650 4 |a microfibril angle 
650 4 |a wood 
650 4 |a wood cell wall toughness 
700 1 |a Saleh, Salimeh  |e verfasserin  |4 aut 
700 1 |a Militz, Holger  |e verfasserin  |4 aut 
700 1 |a Volkert, Cynthia A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 16 vom: 12. Apr., Seite e1907693  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:16  |g day:12  |g month:04  |g pages:e1907693 
856 4 0 |u http://dx.doi.org/10.1002/adma.201907693  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 16  |b 12  |c 04  |h e1907693