A Weighted Fidelity and Regularization-Based Method for Mixed or Unknown Noise Removal from Images on Graphs

Image denoising technologies in a Euclidean domain have achieved good results and are becoming mature. However, in recent years, many real-world applications encountered in computer vision and geometric modeling involve image data defined in irregular domains modeled by huge graphs, which results in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 25. Feb.
1. Verfasser: Wang, Cong (VerfasserIn)
Weitere Verfasser: Yan, Ziyue, Pedrycz, Witold, Zhou, Mengchu, Li, Zhiwu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM307048640
003 DE-627
005 20240229162615.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2969076  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM307048640 
035 |a (NLM)32112681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Cong  |e verfasserin  |4 aut 
245 1 2 |a A Weighted Fidelity and Regularization-Based Method for Mixed or Unknown Noise Removal from Images on Graphs 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Image denoising technologies in a Euclidean domain have achieved good results and are becoming mature. However, in recent years, many real-world applications encountered in computer vision and geometric modeling involve image data defined in irregular domains modeled by huge graphs, which results in the problem on how to solve image denoising problems defined on graphs. In this paper, we propose a novel model for removing mixed or unknown noise in images on graphs. The objective is to minimize the sum of a weighted fidelity term and a sparse regularization term that additionally utilizes wavelet frame transform on graphs to retain feature details of images defined on graphs. Specifically, the weighted fidelity term with ℓ1-norm and ℓ2-norm is designed based on a analysis of the distribution of mixed noise. The augmented Lagrangian and accelerated proximal gradient methods are employed to achieve the optimal solution to the problem. Finally, some supporting numerical results and comparative analyses with other denoising algorithms are provided. It is noted that we investigate image denoising with unknown noise or a wide range of mixed noise, especially the mixture of Poisson, Gaussian, and impulse noise. Experimental results reported for synthetic and real images on graphs demonstrate that the proposed method is effective and efficient, and exhibits better performance for the removal of mixed or unknown noise in images on graphs than other denoising algorithms in the literature. The method can effectively remove mixed or unknown noise and retain feature details of images on graphs. It delivers a new avenue for denoising images in irregular domains 
650 4 |a Journal Article 
700 1 |a Yan, Ziyue  |e verfasserin  |4 aut 
700 1 |a Pedrycz, Witold  |e verfasserin  |4 aut 
700 1 |a Zhou, Mengchu  |e verfasserin  |4 aut 
700 1 |a Li, Zhiwu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 25. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:25  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2969076  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 25  |c 02