Localized Electrons Enhanced Ion Transport for Ultrafast Electrochemical Energy Storage

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 14 vom: 20. Apr., Seite e1905578
Auteur principal: Chen, Jiewei (Auteur)
Autres auteurs: Luo, Bi, Chen, Qiushui, Li, Fei, Guo, Yanjiao, Wu, Tom, Peng, Peng, Qin, Xian, Wu, Gaoxiang, Cui, Mengqi, Liu, Lehao, Chu, Lihua, Jiang, Bing, Li, Yingfeng, Gong, Xueqing, Chai, Yang, Yang, Yongping, Chen, Yonghua, Huang, Wei, Liu, Xiaogang, Li, Meicheng
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article electrochemical energy storage high loading mass ion transport lithium-ion batteries sodium-ion batteries
Description
Résumé:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed. Theoretical calculations and analysis reveal that highly localized electrons can be induced by intrinsic defects, and the migration barrier of ions can be obviously reduced. Consistently, experiment results reveal that this mechanism leads to an enhancement of Li/Na ion diffusivity by two orders of magnitude. At high mass loading of 10 mg cm-2 and high rate of 10C, a reversible energy storage capacity up to 190 mAh g-1 is achieved, which is ten times greater than achievable by commercial crystals with comparable dimensions
Description:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201905578