|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM306900017 |
003 |
DE-627 |
005 |
20250226195800.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15053
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1022.xml
|
035 |
|
|
|a (DE-627)NLM306900017
|
035 |
|
|
|a (NLM)32097522
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Alster, Charlotte J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Embracing a new paradigm for temperature sensitivity of soil microbes
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.09.2020
|
500 |
|
|
|a Date Revised 15.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 John Wiley & Sons Ltd.
|
520 |
|
|
|a The temperature sensitivity of soil processes is of major interest, especially in light of climate change. Originally formulated to explain the temperature dependence of chemical reactions, the Arrhenius equation, and related Q10 temperature coefficient, has a long history of application to soil biological processes. However, empirical data indicate that Q10 and Arrhenius model are often poor metrics of temperature sensitivity in soils. In this opinion piece, we aim to (a) review alternative approaches for characterizing temperature sensitivity, focusing on macromolecular rate theory (MMRT); (b) provide strategies and tools for implementing a new temperature sensitivity framework; (c) develop thermal adaptation hypotheses for the MMRT framework; and (d) explore new questions and opportunities stemming from this paradigm shift. Microbial ecologists should consider developing and adopting MMRT as the basis for predicting biological rates as a function of temperature. Improved understanding of temperature sensitivity in soils is particularly pertinent as microbial response to temperature has a large impact on global climate feedbacks
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Arrhenius
|
650 |
|
4 |
|a Q10
|
650 |
|
4 |
|a activation energy
|
650 |
|
4 |
|a macromolecular rate theory
|
650 |
|
4 |
|a soil microbes
|
650 |
|
4 |
|a temperature sensitivity
|
650 |
|
4 |
|a thermal adaptation
|
650 |
|
7 |
|a Soil
|2 NLM
|
700 |
1 |
|
|a von Fischer, Joseph C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Allison, Steven D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Treseder, Kathleen K
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 26(2020), 6 vom: 25. Juni, Seite 3221-3229
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnas
|
773 |
1 |
8 |
|g volume:26
|g year:2020
|g number:6
|g day:25
|g month:06
|g pages:3221-3229
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15053
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2020
|e 6
|b 25
|c 06
|h 3221-3229
|