Deep Collaborative Multi-view Hashing for Large-scale Image Search

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing met...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 21. Feb.
1. Verfasser: Zhu, Lei (VerfasserIn)
Weitere Verfasser: Lu, Xu, Cheng, Zhiyong, Li, Jingjing, Zhang, Huaxiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM306846063
003 DE-627
005 20250226194516.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2974065  |2 doi 
028 5 2 |a pubmed25n1022.xml 
035 |a (DE-627)NLM306846063 
035 |a (NLM)32092006 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Lei  |e verfasserin  |4 aut 
245 1 0 |a Deep Collaborative Multi-view Hashing for Large-scale Image Search 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Lu, Xu  |e verfasserin  |4 aut 
700 1 |a Cheng, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Li, Jingjing  |e verfasserin  |4 aut 
700 1 |a Zhang, Huaxiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 21. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2020  |g day:21  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2974065  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 21  |c 02