Soft-edge Assisted Network for Single Image Super-Resolution

The task of single image super-resolution (SISR) is a highly ill-posed inverse problem since reconstructing the highfrequency details from a low-resolution image is challenging. Most previous CNN-based super-resolution (SR) methods tend to directly learn the mapping from the low-resolution image to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2020) vom: 24. Feb.
1. Verfasser: Fang, Faming (VerfasserIn)
Weitere Verfasser: Li, Juncheng, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM306845962
003 DE-627
005 20240229162602.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.2973769  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM306845962 
035 |a (NLM)32092001 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Faming  |e verfasserin  |4 aut 
245 1 0 |a Soft-edge Assisted Network for Single Image Super-Resolution 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The task of single image super-resolution (SISR) is a highly ill-posed inverse problem since reconstructing the highfrequency details from a low-resolution image is challenging. Most previous CNN-based super-resolution (SR) methods tend to directly learn the mapping from the low-resolution image to the high-resolution image through some complex convolutional neural networks. However, the method of blindly increasing the depth of the network is not the best choice because the performance improvement of such methods is marginal but the computational cost is huge. A more efficient method is to integrate the image prior knowledge into the model to assist the image reconstruction. Indeed, the soft-edge has been widely applied in many computer vision tasks as the role of an important image feature. In this paper, we propose a Soft-edge assisted Network (SeaNet) to reconstruct the high-quality SR image with the help of image soft-edge. The proposed SeaNet consists of three sub-nets: a rough image reconstruction network (RIRN), a soft-edge reconstruction network (Edge-Net), and an image refinement network (IRN). The complete reconstruction process consists of two stages. In Stage-I, the rough SR feature maps and the SR soft-edge are reconstructed by the RIRN and Edge-Net, respectively. In Stage-II, the outputs of the previous stages are fused and then feed to the IRN for high-quality SR image reconstruction. Extensive experiments show that our SeaNet converges rapidly and achieves excellent performance under the assistance of image soft-edge. The code is available at https://gitlab.com/junchenglee/seanet-pytorch 
650 4 |a Journal Article 
700 1 |a Li, Juncheng  |e verfasserin  |4 aut 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2020) vom: 24. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2020  |g day:24  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.2973769  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 24  |c 02