MdCER2 conferred to wax accumulation and increased drought tolerance in plants

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 149(2020) vom: 14. Apr., Seite 277-285
1. Verfasser: Zhong, Ming-Shuang (VerfasserIn)
Weitere Verfasser: Jiang, Han, Cao, Yue, Wang, Yong-Xu, You, Chun-Xiang, Li, Yuan-Yuan, Hao, Yu-Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Review ABA sensitivity Apple Cuticular wax Drought tolerance MdCER2 Plant Proteins Transcription Factors Waxes
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Drought can activate many stress responses in plant growth and development, including the synthesis of epidermal wax and the induction of abscisic acid (ABA), and increased wax accumulation will improve plant drought resistance. Therefore, an examination of wax biosynthesis genes could help to better understand the molecular mechanism of environmental factors regulating wax biosynthesis and the wax associated stress response. Here, we identified the MdCER2 gene from the 'Gala' (Malus× domestica Borkh.) variety of domestic apple, which is a homolog of Arabidopsis AtCER2. It possesses a transferase domain and the protein localizes on the cell membrane. The MdCER2 gene was constitutively expressed in apple tissues and was induced by drought treatment. Finally, we transformed the MdCER2 gene into Arabidopsis to identify its function, and found ectopic expression of MdCER2 promoted accumulation of cuticular wax in both leaves and stems, decreased water loss and permeability in leaves, increased lateral root number, changed plant ABA sensitivity, and increased drought resistance
Beschreibung:Date Completed 17.07.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.02.013