Efficient and Effective Regularized Incomplete Multi-View Clustering

Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) forms a benchmark, which redefines IMVC as a joint...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 8 vom: 07. Aug., Seite 2634-2646
1. Verfasser: Liu, Xinwang (VerfasserIn)
Weitere Verfasser: Li, Miaomiao, Tang, Chang, Xia, Jingyuan, Xiong, Jian, Liu, Li, Kloft, Marius, Zhu, En
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM30679103X
003 DE-627
005 20231225124139.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2974828  |2 doi 
028 5 2 |a pubmed24n1022.xml 
035 |a (DE-627)NLM30679103X 
035 |a (NLM)32086196 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
245 1 0 |a Efficient and Effective Regularized Incomplete Multi-View Clustering 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated optimization and limitedly improved clustering performance. In this paper, we first propose an Efficient and Effective Incomplete Multi-view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover, we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two three-step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity, and their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms. Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly and consistently outperforming some state-of-the-art ones 
650 4 |a Journal Article 
700 1 |a Li, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Tang, Chang  |e verfasserin  |4 aut 
700 1 |a Xia, Jingyuan  |e verfasserin  |4 aut 
700 1 |a Xiong, Jian  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Kloft, Marius  |e verfasserin  |4 aut 
700 1 |a Zhu, En  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 8 vom: 07. Aug., Seite 2634-2646  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:8  |g day:07  |g month:08  |g pages:2634-2646 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2974828  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 8  |b 07  |c 08  |h 2634-2646