Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection

Object detection has recently experienced substantial progress. Yet, the widely adopted horizontal bounding box representation is not appropriate for ubiquitous oriented objects such as objects in aerial images and scene texts. In this paper, we propose a simple yet effective framework to detect mul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 4 vom: 07. Apr., Seite 1452-1459
1. Verfasser: Xu, Yongchao (VerfasserIn)
Weitere Verfasser: Fu, Mingtao, Wang, Qimeng, Wang, Yukang, Chen, Kai, Xia, Gui-Song, Bai, Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM306791013
003 DE-627
005 20231225124139.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2974745  |2 doi 
028 5 2 |a pubmed24n1022.xml 
035 |a (DE-627)NLM306791013 
035 |a (NLM)32086194 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yongchao  |e verfasserin  |4 aut 
245 1 0 |a Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object detection has recently experienced substantial progress. Yet, the widely adopted horizontal bounding box representation is not appropriate for ubiquitous oriented objects such as objects in aerial images and scene texts. In this paper, we propose a simple yet effective framework to detect multi-oriented objects. Instead of directly regressing the four vertices, we glide the vertex of the horizontal bounding box on each corresponding side to accurately describe a multi-oriented object. Specifically, We regress four length ratios characterizing the relative gliding offset on each corresponding side. This may facilitate the offset learning and avoid the confusion issue of sequential label points for oriented objects. To further remedy the confusion issue for nearly horizontal objects, we also introduce an obliquity factor based on area ratio between the object and its horizontal bounding box, guiding the selection of horizontal or oriented detection for each object. We add these five extra target variables to the regression head of faster R-CNN, which requires ignorable extra computation time. Extensive experimental results demonstrate that without bells and whistles, the proposed method achieves superior performances on multiple multi-oriented object detection benchmarks including object detection in aerial images, scene text detection, pedestrian detection in fisheye images 
650 4 |a Journal Article 
700 1 |a Fu, Mingtao  |e verfasserin  |4 aut 
700 1 |a Wang, Qimeng  |e verfasserin  |4 aut 
700 1 |a Wang, Yukang  |e verfasserin  |4 aut 
700 1 |a Chen, Kai  |e verfasserin  |4 aut 
700 1 |a Xia, Gui-Song  |e verfasserin  |4 aut 
700 1 |a Bai, Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 4 vom: 07. Apr., Seite 1452-1459  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:4  |g day:07  |g month:04  |g pages:1452-1459 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2974745  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 4  |b 07  |c 04  |h 1452-1459