Quantification of Diabetic Retinopathy Lesions in DME Patients With Intravitreal Conbercept Treatment Using Deep Learning

© 2020 Yu, Wang, Zhou, et al.

Bibliographische Detailangaben
Veröffentlicht in:Ophthalmic surgery, lasers & imaging retina. - 2013. - 51(2020), 2 vom: 01. Feb., Seite 95-100
1. Verfasser: Yu, Qi (VerfasserIn)
Weitere Verfasser: Wang, Fenghua, Zhou, Lei, Yang, Jie, Liu, Kun, Xu, Xun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ophthalmic surgery, lasers & imaging retina
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Angiogenesis Inhibitors Recombinant Fusion Proteins VEGFA protein, human Vascular Endothelial Growth Factor A KH902 fusion protein 1P05PW62F3
LEADER 01000caa a22002652c 4500
001 NLM306778637
003 DE-627
005 20250226192755.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.3928/23258160-20200129-05  |2 doi 
028 5 2 |a pubmed25n1022.xml 
035 |a (DE-627)NLM306778637 
035 |a (NLM)32084282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Qi  |e verfasserin  |4 aut 
245 1 0 |a Quantification of Diabetic Retinopathy Lesions in DME Patients With Intravitreal Conbercept Treatment Using Deep Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.03.2021 
500 |a Date Revised 12.03.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2020 Yu, Wang, Zhou, et al. 
520 |a BACKGROUND AND OBJECTIVES: To quantitatively evaluate diabetic retinopathy (DR) lesions using the authors' validated machine learning algorithms and provide physicians with an automated and precise method to follow the progression of DR and outcome of interventions 
520 |a PATIENTS AND METHODS: Retrospective analyses were conducted of 3,496 color fundus photography images from 19 patients with clinically significant diabetic macular edema receiving conbercept treatment. The modified seven-field fundus images were obtained at baseline and at the third, sixth, and twelfth month visit, whereas the modified two-field fundus images were obtained at the other monthly visits. The area of intraretinal hemorrhage and hard exudate lesions was traced by the authors' validated algorithms 
520 |a RESULTS: The mean central foveal thickness at baseline was 459.9 μm ± 127.5 μm. Mean central foveal thickness was 316.5 μm ± 53.0 μm at the twelfth month visit, which decreased by 143.4 μm when compared with the baseline optical coherence tomography. The mean total area of intraretinal hemorrhage in the study eye in seven fields was 5.656 ± 1.176 mm2 at baseline, 2.438 ± 0.976 mm2 at the third month, 2.901 ± 0.521 mm2 at the sixth month, and 2.122 ± 0.582 mm2 at the end of the study. The area of intraretinal hemorrhage was reduced by 62.49% from baseline to the end of study (P < .0001). The mean total area of hard exudates in the study eye was 2.549 ± 0.776 mm2 at baseline, 2.233 ± 0.576 mm2 at the third month, 2.710 ± 0.621 mm2 at the sixth month, and 1.473 ± 0.564 mm2 at the end of the study. The mean total area of hard exudates decreased by 41.1% at the twelfth month (P < .0001) compared with the first visit. Significant decrease was observed in the area of intraretinal hemorrhage during conbercept treatment. The hard exudates area fluctuated during loading then subsequently decreased at the twelfth month 
520 |a CONCLUSIONS: The present study quantitatively analyzed the change in the area change of intraretinal hemorrhage and hard exudate lesions during the course of conbercept treatment. The automated system is promising to be a precise and objective method for monitoring the progression of DR and outcomes of interventions in clinical settings. [Ophthalmic Surg Lasers Imaging Retina. 2020;51:95-100.] 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Angiogenesis Inhibitors  |2 NLM 
650 7 |a Recombinant Fusion Proteins  |2 NLM 
650 7 |a VEGFA protein, human  |2 NLM 
650 7 |a Vascular Endothelial Growth Factor A  |2 NLM 
650 7 |a KH902 fusion protein  |2 NLM 
650 7 |a 1P05PW62F3  |2 NLM 
700 1 |a Wang, Fenghua  |e verfasserin  |4 aut 
700 1 |a Zhou, Lei  |e verfasserin  |4 aut 
700 1 |a Yang, Jie  |e verfasserin  |4 aut 
700 1 |a Liu, Kun  |e verfasserin  |4 aut 
700 1 |a Xu, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ophthalmic surgery, lasers & imaging retina  |d 2013  |g 51(2020), 2 vom: 01. Feb., Seite 95-100  |w (DE-627)NLM224956647  |x 2325-8179  |7 nnas 
773 1 8 |g volume:51  |g year:2020  |g number:2  |g day:01  |g month:02  |g pages:95-100 
856 4 0 |u http://dx.doi.org/10.3928/23258160-20200129-05  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_40 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_91 
912 |a GBV_ILN_130 
912 |a GBV_ILN_135 
912 |a GBV_ILN_136 
912 |a GBV_ILN_151 
912 |a GBV_ILN_181 
912 |a GBV_ILN_203 
912 |a GBV_ILN_217 
912 |a GBV_ILN_235 
912 |a GBV_ILN_289 
912 |a GBV_ILN_294 
912 |a GBV_ILN_297 
912 |a GBV_ILN_350 
912 |a GBV_ILN_352 
912 |a GBV_ILN_674 
912 |a GBV_ILN_676 
912 |a GBV_ILN_688 
912 |a GBV_ILN_698 
912 |a GBV_ILN_721 
912 |a GBV_ILN_737 
912 |a GBV_ILN_791 
912 |a GBV_ILN_812 
951 |a AR 
952 |d 51  |j 2020  |e 2  |b 01  |c 02  |h 95-100