Selective Photocatalytic Oxidation of Thioanisole on DUT-67(Zr) Mediated by Surface Coordination

DUT-67(Zr) was obtained by a solvothermal route and applied to photocatalytic selective synthesis of thioanisole under light illuminating. The conversion of thioanisole is up to 95%, and the selectivity of methyl phenyl sulfoxide is 98%. The activity of DUT-67(Zr) is over 10 times higher than that o...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 36(2020), 9 vom: 10. März, Seite 2199-2208
Auteur principal: Liu, Yanyang (Auteur)
Autres auteurs: Zou, Junhua, Guo, Binbin, Ren, Yahang, Wang, Zhitong, Song, Yujie, Yu, Yan, Wu, Ling
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:DUT-67(Zr) was obtained by a solvothermal route and applied to photocatalytic selective synthesis of thioanisole under light illuminating. The conversion of thioanisole is up to 95%, and the selectivity of methyl phenyl sulfoxide is 98%. The activity of DUT-67(Zr) is over 10 times higher than that of UiO-66. This great increased activity is attributed to the high percentages of oxygen vacancies on DUT-67(Zr). The ESR result shows there are more oxygen vacancies that can expose high density unsaturated Zr sites on DUT-67(Zr). The in situ FTIR reveals that unsaturated Zr sites on DUT-67(Zr) possess Lewis acidity which facilitate the adsorption of the substrates to form the coordination species, promoting the activation of thioanisole. The absorption edge of DUT-67(Zr) with coordination species red-shifts to 360 nm, which can be presented by DRS. Furthermore, the oxygen molecules can be activated by excited electrons to form •O2-. Finally, a possible photocatalytic process of oxidating thioanisole to methyl phenyl sulfoxide based on the coordination effect between DUT-67(Zr) and thioanisole is proposed at a molecular level
Description:Date Revised 10.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b02582