Thermal-Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 12 vom: 08. März, Seite e1907030
1. Verfasser: Hu, Benhui (VerfasserIn)
Weitere Verfasser: Berkey, Christopher, Feliciano, Timothy, Chen, Xiaohong, Li, Zhuyun, Chen, Chao, Amini, Shahrouz, Nai, Mui Hoon, Lei, Qun-Li, Ni, Ran, Wang, Juan, Leow, Wan Ru, Pan, Shaowu, Li, Yong-Qiang, Cai, Pingqiang, Miserez, Ali, Li, Shuzhou, Lim, Chwee Teck, Wu, Yun-Long, Odom, Teri W, Dauskardt, Reinhold H, Chen, Xiaodong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antibacterial therapy biointerfaces intercellular cohesion thermal management wound healing Acrylic Resins Anti-Bacterial Agents Hydrogels poly-N-isopropylacrylamide mehr... 25189-55-3 Gold 7440-57-5
LEADER 01000caa a22002652 4500
001 NLM306666561
003 DE-627
005 20240330232418.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201907030  |2 doi 
028 5 2 |a pubmed24n1356.xml 
035 |a (DE-627)NLM306666561 
035 |a (NLM)32072703 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Benhui  |e verfasserin  |4 aut 
245 1 0 |a Thermal-Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.11.2020 
500 |a Date Revised 30.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug-resistant pathogens. Although several strategies such as photothermal therapy and magneto-thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal-disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat-responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy 
650 4 |a Journal Article 
650 4 |a antibacterial therapy 
650 4 |a biointerfaces 
650 4 |a intercellular cohesion 
650 4 |a thermal management 
650 4 |a wound healing 
650 7 |a Acrylic Resins  |2 NLM 
650 7 |a Anti-Bacterial Agents  |2 NLM 
650 7 |a Hydrogels  |2 NLM 
650 7 |a poly-N-isopropylacrylamide  |2 NLM 
650 7 |a 25189-55-3  |2 NLM 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
700 1 |a Berkey, Christopher  |e verfasserin  |4 aut 
700 1 |a Feliciano, Timothy  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaohong  |e verfasserin  |4 aut 
700 1 |a Li, Zhuyun  |e verfasserin  |4 aut 
700 1 |a Chen, Chao  |e verfasserin  |4 aut 
700 1 |a Amini, Shahrouz  |e verfasserin  |4 aut 
700 1 |a Nai, Mui Hoon  |e verfasserin  |4 aut 
700 1 |a Lei, Qun-Li  |e verfasserin  |4 aut 
700 1 |a Ni, Ran  |e verfasserin  |4 aut 
700 1 |a Wang, Juan  |e verfasserin  |4 aut 
700 1 |a Leow, Wan Ru  |e verfasserin  |4 aut 
700 1 |a Pan, Shaowu  |e verfasserin  |4 aut 
700 1 |a Li, Yong-Qiang  |e verfasserin  |4 aut 
700 1 |a Cai, Pingqiang  |e verfasserin  |4 aut 
700 1 |a Miserez, Ali  |e verfasserin  |4 aut 
700 1 |a Li, Shuzhou  |e verfasserin  |4 aut 
700 1 |a Lim, Chwee Teck  |e verfasserin  |4 aut 
700 1 |a Wu, Yun-Long  |e verfasserin  |4 aut 
700 1 |a Odom, Teri W  |e verfasserin  |4 aut 
700 1 |a Dauskardt, Reinhold H  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaodong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 12 vom: 08. März, Seite e1907030  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:12  |g day:08  |g month:03  |g pages:e1907030 
856 4 0 |u http://dx.doi.org/10.1002/adma.201907030  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 12  |b 08  |c 03  |h e1907030