Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis

Copyright © 2019 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 31(2019), 17 vom: 10. Sept., Seite 7080-7084
1. Verfasser: Proctor, Christopher M (VerfasserIn)
Weitere Verfasser: Chan, Chung Yuen, Porcarelli, Luca, Udabe, Esther, Sanchez-Sanchez, Ana, Del Agua, Isabel, Mecerreyes, David, Malliaras, George G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM306577933
003 DE-627
005 20240725232051.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.9b02135  |2 doi 
028 5 2 |a pubmed24n1481.xml 
035 |a (DE-627)NLM306577933 
035 |a (NLM)32063677 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Proctor, Christopher M  |e verfasserin  |4 aut 
245 1 0 |a Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2019 American Chemical Society. 
520 |a Local drug delivery directly to the source of a given pathology using retrodialysis is a promising approach to treating otherwise untreatable diseases. As the primary material component in retrodialysis, the semipermeable membrane represents a critical point for innovation. This work presents a new ionic hydrogel based on polyethylene glycol and acrylate with dopamine counterions. The ionic hydrogel membrane is shown to be a promising material for controlled diffusive delivery of dopamine. The ionic nature of the membrane accelerates uptake of cationic species compared to a nonionic membrane of otherwise similar composition. It is demonstrated that the increased uptake of cations can be exploited to confer an accelerated transport of cationic species between reservoirs as is desired in retrodialysis applications. This effect is shown to enable nearly 10-fold increases in drug delivery rates from low concentration solutions. The processability of the membrane is found to allow for integration with microfabricated devices which will in turn accelerate adaptation into both existing and emerging device modalities. It is anticipated that a similar materials design approach may be broadly applied to a variety of cationic and anionic compounds for drug delivery applications ranging from neurological disorders to cancer 
650 4 |a Journal Article 
700 1 |a Chan, Chung Yuen  |e verfasserin  |4 aut 
700 1 |a Porcarelli, Luca  |e verfasserin  |4 aut 
700 1 |a Udabe, Esther  |e verfasserin  |4 aut 
700 1 |a Sanchez-Sanchez, Ana  |e verfasserin  |4 aut 
700 1 |a Del Agua, Isabel  |e verfasserin  |4 aut 
700 1 |a Mecerreyes, David  |e verfasserin  |4 aut 
700 1 |a Malliaras, George G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 31(2019), 17 vom: 10. Sept., Seite 7080-7084  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:17  |g day:10  |g month:09  |g pages:7080-7084 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.9b02135  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 17  |b 10  |c 09  |h 7080-7084