|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM306527901 |
003 |
DE-627 |
005 |
20250226182601.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.26172
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1021.xml
|
035 |
|
|
|a (DE-627)NLM306527901
|
035 |
|
|
|a (NLM)32058615
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Martino, Marta
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Chemical promenades
|b Exploring potential-energy surfaces with immersive virtual reality
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.04.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley Periodicals, Inc.
|
520 |
|
|
|a The virtual-reality framework AVATAR (Advanced Virtual Approach to Topological Analysis of Reactivity) for the immersive exploration of potential-energy landscapes is presented. AVATAR is based on modern consumer-grade virtual-reality technology and builds on two key concepts: (a) the reduction of the dimensionality of the potential-energy surface to two process-tailored, physically meaningful generalized coordinates, and (b) the analogy between the evolution of a chemical process and a pathway through valleys (potential wells) and mountain passes (saddle points) of the associated potential energy landscape. Examples including the discovery of competitive reaction paths in simple A + BC collisional systems and the interconversion between conformers in ring-puckering motions of flexible rings highlight the innovation potential that augmented and virtual reality convey for teaching, training, and supporting research in chemistry
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a atom diatom reactions
|
650 |
|
4 |
|a immersive virtual reality
|
650 |
|
4 |
|a potential energy surface
|
650 |
|
4 |
|a ring puckering motions
|
700 |
1 |
|
|a Salvadori, Andrea
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lazzari, Federico
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Paoloni, Lorenzo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nandi, Surajit
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mancini, Giordano
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Barone, Vincenzo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rampino, Sergio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 41(2020), 13 vom: 15. Mai, Seite 1310-1323
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnas
|
773 |
1 |
8 |
|g volume:41
|g year:2020
|g number:13
|g day:15
|g month:05
|g pages:1310-1323
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.26172
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2020
|e 13
|b 15
|c 05
|h 1310-1323
|