Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs)

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 20 vom: 20. Mai, Seite e1906876
1. Verfasser: Podgórski, Maciej (VerfasserIn)
Weitere Verfasser: Fairbanks, Benjamin D, Kirkpatrick, Bruce E, McBride, Matthew, Martinez, Alina, Dobson, Adam, Bongiardina, Nicholas J, Bowman, Christopher N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review covalent adaptable networks dynamic covalent chemistry recycling stimuli responsiveness
LEADER 01000naa a22002652 4500
001 NLM306513420
003 DE-627
005 20231225123529.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201906876  |2 doi 
028 5 2 |a pubmed24n1021.xml 
035 |a (DE-627)NLM306513420 
035 |a (NLM)32057157 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Podgórski, Maciej  |e verfasserin  |4 aut 
245 1 0 |a Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs) 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Covalent adaptable networks (CANs), unlike typical thermosets or other covalently crosslinked networks, possess a unique, often dormant ability to activate one or more forms of stimuli-responsive, dynamic covalent chemistries as a means to transition their behavior from that of a viscoelastic solid to a material with fluid-like plastic flow. Upon application of a stimulus, such as light or other irradiation, temperature, or even a distinct chemical signal, the CAN responds by transforming to a state of temporal plasticity through activation of either reversible addition or reversible bond exchange, either of which allows the material to essentially re-equilibrate to an altered set of conditions that are distinct from those in which the original covalently crosslinked network is formed, often simultaneously enabling a new and distinct shape, function, and characteristics. As such, CANs span the divide between thermosets and thermoplastics, thus offering unprecedented possibilities for innovation in polymer and materials science. Without attempting to comprehensively review the literature, recent developments in CANs are discussed here with an emphasis on the most effective dynamic chemistries that render these materials to be stimuli responsive, enabling features that make CANs more broadly applicable 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a covalent adaptable networks 
650 4 |a dynamic covalent chemistry 
650 4 |a recycling 
650 4 |a stimuli responsiveness 
700 1 |a Fairbanks, Benjamin D  |e verfasserin  |4 aut 
700 1 |a Kirkpatrick, Bruce E  |e verfasserin  |4 aut 
700 1 |a McBride, Matthew  |e verfasserin  |4 aut 
700 1 |a Martinez, Alina  |e verfasserin  |4 aut 
700 1 |a Dobson, Adam  |e verfasserin  |4 aut 
700 1 |a Bongiardina, Nicholas J  |e verfasserin  |4 aut 
700 1 |a Bowman, Christopher N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 20 vom: 20. Mai, Seite e1906876  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:20  |g day:20  |g month:05  |g pages:e1906876 
856 4 0 |u http://dx.doi.org/10.1002/adma.201906876  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 20  |b 20  |c 05  |h e1906876