Synergistic Improvement of Long-Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia-Based Oxide-Semiconductor Transistors

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 12 vom: 06. März, Seite e1907826
1. Verfasser: Kim, Min-Kyu (VerfasserIn)
Weitere Verfasser: Lee, Jang-Sik
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial synapses ferroelectric materials oxide semiconductors persistent photoconductivity thin-film transistors
LEADER 01000caa a22002652c 4500
001 NLM306475103
003 DE-627
005 20250226181313.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201907826  |2 doi 
028 5 2 |a pubmed25n1021.xml 
035 |a (DE-627)NLM306475103 
035 |a (NLM)32053265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Min-Kyu  |e verfasserin  |4 aut 
245 1 0 |a Synergistic Improvement of Long-Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia-Based Oxide-Semiconductor Transistors 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.03.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a A number of synapse devices have been intensively studied for the neuromorphic system which is the next-generation energy-efficient computing method. Among these various types of synapse devices, photonic synapse devices recently attracted significant attention. In particular, the photonic synapse devices using persistent photoconductivity (PPC) phenomena in oxide semiconductors are receiving much attention due to the similarity between relaxation characteristics of PPC phenomena and Ca2+ dynamics of biological synapses. However, these devices have limitations in its controllability of the relaxation characteristics of PPC behaviors. To utilize the oxide semiconductor as photonic synapse devices, relaxation behavior needs to be accurately controlled. In this study, a photonic synapse device with controlled relaxation characteristics by using an oxide semiconductor and a ferroelectric layer is demonstrated. This device exploits the PPC characteristics to demonstrate synaptic functions including short-term plasticity, paired-pulse facilitation (PPF), and long-term plasticity (LTP). The relaxation properties are controlled by the polarization of the ferroelectric layer, and this polarization is used to control the amount by which the conductance levels increase during PPF operation and to enhance LTP characteristics. This study provides an important step toward the development of photonic synapses with tunable synaptic functions 
650 4 |a Journal Article 
650 4 |a artificial synapses 
650 4 |a ferroelectric materials 
650 4 |a oxide semiconductors 
650 4 |a persistent photoconductivity 
650 4 |a thin-film transistors 
700 1 |a Lee, Jang-Sik  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 12 vom: 06. März, Seite e1907826  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:32  |g year:2020  |g number:12  |g day:06  |g month:03  |g pages:e1907826 
856 4 0 |u http://dx.doi.org/10.1002/adma.201907826  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 12  |b 06  |c 03  |h e1907826