Water-Stable Lithium Metal Anodes with Ultrahigh-Rate Capability Enabled by a Hydrophobic Graphene Architecture

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 14 vom: 01. Apr., Seite e1908494
1. Verfasser: Dong, Lei (VerfasserIn)
Weitere Verfasser: Nie, Lu, Liu, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article lean electrolyte low negative/positive capacity ratio ultrahigh-rate capability water-stable lithium metal anodes
LEADER 01000naa a22002652 4500
001 NLM306474719
003 DE-627
005 20231225123438.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201908494  |2 doi 
028 5 2 |a pubmed24n1021.xml 
035 |a (DE-627)NLM306474719 
035 |a (NLM)32053226 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Lei  |e verfasserin  |4 aut 
245 1 0 |a Water-Stable Lithium Metal Anodes with Ultrahigh-Rate Capability Enabled by a Hydrophobic Graphene Architecture 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Implementing the utilization of lithium metal in actual processing and application conditions is essential for next-generation high-energy batteries at a practical level. However, the air/water instability of the high-reactive Li metal remains unsolved. Here, a water-stable Li metal anode with ultrahigh-rate capability enabled by a rationally designed architecture is reported. A hydrophobic graphene framework, consists of an array of vertically aligned sheets and a roof of sloping-aligned sheets, is utilized to fully host lithium metal. As a result, it is first demonstrated that the composite Li metal anode can run stably even after it directly contacts with water. In addition, both the arrays and the roof in the framework are directional graphene microsheets that can provide fast charge transport kinetics in the anode without tortuosity. Therefore, the anode can operate at an extremely high current density of 50 mA cm-2 with long-term cycling stability. Importantly, the composite Li anodes in Li||LiFePO4 and Li||NCM-811 cells also show much improved performances than Li metal foil under crucial conditions of lean electrolyte and low negative/positive capacity ratio. This design provides a significant stride in the safety toward the practicability of low air/water tolerance materials 
650 4 |a Journal Article 
650 4 |a lean electrolyte 
650 4 |a low negative/positive capacity ratio 
650 4 |a ultrahigh-rate capability 
650 4 |a water-stable lithium metal anodes 
700 1 |a Nie, Lu  |e verfasserin  |4 aut 
700 1 |a Liu, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 14 vom: 01. Apr., Seite e1908494  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:14  |g day:01  |g month:04  |g pages:e1908494 
856 4 0 |u http://dx.doi.org/10.1002/adma.201908494  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 14  |b 01  |c 04  |h e1908494