Foliar manganese spray induces the resistance of cucumber to Colletotrichum lagenarium

Copyright © 2020 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 246-247(2020) vom: 05. März, Seite 153129
1. Verfasser: Eskandari, S (VerfasserIn)
Weitere Verfasser: Höfte, H, Zhang, T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Callose Cell death Cucumber Lignification Manganese ROS Micronutrients 42Z2K6ZL8P
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier GmbH. All rights reserved.
Micronutrients provide a potentially interesting alternative to fungicides for the protection of crops against fungal pathogens. Here we studied the effect of foliar-applied manganese (Mn) in the form of MnSO4 on severity of anthracnose disease, caused by Colletotrichum lagenarium in cucumber (Cucumis sativus L.) plant. The study was done aimed to characterize the optimum dose and application time of Mn fertilizer on disease suppression as well as to identify the defense mechanisms by which Mn-treated plants resist to fungal disease. In preliminary tests, Mn was applied at different concentrations (1.8, 4.5 and 7.2 mM) and various time points (three days before or two hours before inoculation, or three days after inoculation). Results showed that application of Mn either before or after inoculation suppressed the fungal infection in leaves and cotyledons, with a higher efficiency when applied three days prior to inoculation. However, all applied concentrations of Mn equally reduced the disease severity. Mn treatment in the absence of the pathogen promoted lignification and reactive oxygen species (ROS) accumulation. Also, pre-inoculation Mn treatment enhanced pathogen-induced lignification, callose or ROS production and reduced pathogen-induced cell death. The increase of lignin, callose and ROS induction by Mn application were 34, 30 and 31 % compared to control, respectively. Together, the results suggested the effectiveness of Mn treatments on anthracnose alleviation in cucumber plants. The findings here have a practical importance in plant physiology studies to identify the resistance-relevant mechanisms to pathogens and in sustainable agriculture to control the fungal diseases by a safe method
Beschreibung:Date Completed 17.08.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2020.153129