|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM30643704X |
003 |
DE-627 |
005 |
20231225123350.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201907801
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1021.xml
|
035 |
|
|
|a (DE-627)NLM30643704X
|
035 |
|
|
|a (NLM)32049386
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Langner, Stefan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Beyond Ternary OPV
|b High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Fundamental advances to increase the efficiency as well as stability of organic photovoltaics (OPVs) are achieved by designing ternary blends, which represents a clear trend toward multicomponent active layer blends. The development of high-throughput and autonomous experimentation methods is reported for the effective optimization of multicomponent polymer blends for OPVs. A method for automated film formation enabling the fabrication of up to 6048 films per day is introduced. Equipping this automated experimentation platform with a Bayesian optimization, a self-driving laboratory is constructed that autonomously evaluates measurements to design and execute the next experiments. To demonstrate the potential of these methods, a 4D parameter space of quaternary OPV blends is mapped and optimized for photostability. While with conventional approaches, roughly 100 mg of material would be necessary, the robot-based platform can screen 2000 combinations with less than 10 mg, and machine-learning-enabled autonomous experimentation identifies stable compositions with less than 1 mg
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a high-throughput experimentation
|
650 |
|
4 |
|a machine learning
|
650 |
|
4 |
|a organic photovoltaics
|
650 |
|
4 |
|a photostability
|
650 |
|
4 |
|a solar energy
|
700 |
1 |
|
|a Häse, Florian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Perea, José Darío
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stubhan, Tobias
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hauch, Jens
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Roch, Loïc M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Heumueller, Thomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aspuru-Guzik, Alán
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brabec, Christoph J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 14 vom: 15. Apr., Seite e1907801
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:14
|g day:15
|g month:04
|g pages:e1907801
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201907801
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 14
|b 15
|c 04
|h e1907801
|