Beyond Ternary OPV : High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 14 vom: 15. Apr., Seite e1907801
1. Verfasser: Langner, Stefan (VerfasserIn)
Weitere Verfasser: Häse, Florian, Perea, José Darío, Stubhan, Tobias, Hauch, Jens, Roch, Loïc M, Heumueller, Thomas, Aspuru-Guzik, Alán, Brabec, Christoph J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article high-throughput experimentation machine learning organic photovoltaics photostability solar energy
LEADER 01000naa a22002652 4500
001 NLM30643704X
003 DE-627
005 20231225123350.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201907801  |2 doi 
028 5 2 |a pubmed24n1021.xml 
035 |a (DE-627)NLM30643704X 
035 |a (NLM)32049386 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Langner, Stefan  |e verfasserin  |4 aut 
245 1 0 |a Beyond Ternary OPV  |b High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Fundamental advances to increase the efficiency as well as stability of organic photovoltaics (OPVs) are achieved by designing ternary blends, which represents a clear trend toward multicomponent active layer blends. The development of high-throughput and autonomous experimentation methods is reported for the effective optimization of multicomponent polymer blends for OPVs. A method for automated film formation enabling the fabrication of up to 6048 films per day is introduced. Equipping this automated experimentation platform with a Bayesian optimization, a self-driving laboratory is constructed that autonomously evaluates measurements to design and execute the next experiments. To demonstrate the potential of these methods, a 4D parameter space of quaternary OPV blends is mapped and optimized for photostability. While with conventional approaches, roughly 100 mg of material would be necessary, the robot-based platform can screen 2000 combinations with less than 10 mg, and machine-learning-enabled autonomous experimentation identifies stable compositions with less than 1 mg 
650 4 |a Journal Article 
650 4 |a high-throughput experimentation 
650 4 |a machine learning 
650 4 |a organic photovoltaics 
650 4 |a photostability 
650 4 |a solar energy 
700 1 |a Häse, Florian  |e verfasserin  |4 aut 
700 1 |a Perea, José Darío  |e verfasserin  |4 aut 
700 1 |a Stubhan, Tobias  |e verfasserin  |4 aut 
700 1 |a Hauch, Jens  |e verfasserin  |4 aut 
700 1 |a Roch, Loïc M  |e verfasserin  |4 aut 
700 1 |a Heumueller, Thomas  |e verfasserin  |4 aut 
700 1 |a Aspuru-Guzik, Alán  |e verfasserin  |4 aut 
700 1 |a Brabec, Christoph J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 14 vom: 15. Apr., Seite e1907801  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:14  |g day:15  |g month:04  |g pages:e1907801 
856 4 0 |u http://dx.doi.org/10.1002/adma.201907801  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 14  |b 15  |c 04  |h e1907801