Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 11 vom: 05. März, Seite e1906015
1. Verfasser: Zhang, Jing (VerfasserIn)
Weitere Verfasser: Jiang, Wen-Jie, Niu, Shuai, Zhang, Hantang, Liu, Jie, Li, Haiyang, Huang, Gui-Fang, Jiang, Lang, Huang, Wei-Qing, Hu, Jin-Song, Hu, Wenping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article graphene-like films hexabromobenzene oxygen evolution reaction solid-phase migration transition metal nanomeshes
Beschreibung
Zusammenfassung:© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Developing low-cost, highly efficient, and durable electrocatalysts for oxygen evolution reaction (OER) is essential for the practical application of electrochemical water splitting. Herein, it is discovered that organic small molecule (hexabromobenzene, HBB) can activate commercial transition metal (Ni, Fe, and NiFe) foam by directly evolving metal nanomeshes embedded in graphene-like films (M-NMG) through a facile Br-induced solid-phase migration process. Systematic investigations indicate that HBB can conformally generate graphene-like network on bulk metal foam substrate via the cleavage of CBr bonds and the formation of CC linkage. Simultaneously, the cleaved CBr fragments can efficiently extract metal atoms from bulk substrate, in situ producing transition metal nanomeshes embedded in the graphene-like films. As a result, such functional nanostructure can serve as an efficient OER electrocatalyst with a low overpotential and excellent long-term stability. Specifically, the overpotential at 100 mA cm-2 is only 208 mV for NiFe-NM@G, ranking the top-tier OER electrocatalysts. This work demonstrates an intriguing general strategy for directly transforming bulk transition metals into nanostructured functional electrocatalysts via the interaction with organic small molecules, opening up opportunities for bridging the application of organic small molecules in energy technologies
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201906015