|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM306177145 |
003 |
DE-627 |
005 |
20231225122805.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201905988
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1020.xml
|
035 |
|
|
|a (DE-627)NLM306177145
|
035 |
|
|
|a (NLM)32022956
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Guoqiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Low-Spin-State Hematite with Superior Adsorption of Anionic Contaminations for Water Purification
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Hematite attracts intensive interest as an adsorbent for water purification, but the oversized dimension and inherent high-spin Fe(III) restrict its adsorption capability and kinetics. Herein a spatial-confinement strategy is reported that synthesizes ultrafine α-Fe2 O3 benefiting from nanogrids constructed by predeposition of TiO2 nanodots in the MCM-41 channel, and that tunes the spin-state of Fe(III) from high-spin to low-spin induced by the strong guest-host interaction between the ultrafine Fe2 O3 with SiO2 (MCM-41). The low-spin Fe(III) endorses strong bonding with anionic adsorbates, and significantly facilitates the electrons transfer from Fe2 O3 to SiO2 to form a highly positive charged surface, and thereby shows superior electrostatic multilayer adsorption performance to different kinds of anionic contaminations. Specifically, the maximum uptake, adsorption rate, and distribution coefficient (Kd ) for Rose Bengal dye reach as high as 1810 mg g-1 , 1644 g (g min)-1 , and 2.2 × 106 L kg-1 , which are more than 8, 230, and 3700 times higher than those of commercial activated carbon, respectively. It also shows outstanding purification performance for real field water. It is demonstrated that a strong guest-host interaction can alter the spin-state of transition metal oxides, which may pave a new way to improve their performance in adsorption and other applications like catalysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a adsorption
|
650 |
|
4 |
|a hematite
|
650 |
|
4 |
|a spin states
|
650 |
|
4 |
|a water purification
|
700 |
1 |
|
|a Pan, Lun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Rongrong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Shangcong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hou, Fang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiangwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Ji-Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 11 vom: 01. März, Seite e1905988
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:11
|g day:01
|g month:03
|g pages:e1905988
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201905988
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 11
|b 01
|c 03
|h e1905988
|