Hot drought reduces the effects of elevated CO2 on tree water-use efficiency and carbon metabolism

©2020 The Authors. New Phytologist ©2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1984. - 226(2020), 6 vom: 15. Juni, Seite 1607-1621
1. Verfasser: Birami, Benjamin (VerfasserIn)
Weitere Verfasser: Nägele, Thomas, Gattmann, Marielle, Preisler, Yakir, Gast, Andreas, Arneth, Almut, Ruehr, Nadine K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't carbon balance drought elevated CO2 heat photosynthesis primary metabolites protein respiration mehr... Water 059QF0KO0R Carbon Dioxide 142M471B3J Carbon 7440-44-0
Beschreibung
Zusammenfassung:©2020 The Authors. New Phytologist ©2020 New Phytologist Trust.
Trees are increasingly exposed to hot droughts due to CO2 -induced climate change. However, the direct role of [CO2 ] in altering tree physiological responses to drought and heat stress remains ambiguous. Pinus halepensis (Aleppo pine) trees were grown from seed under ambient (421 ppm) or elevated (867 ppm) [CO2 ]. The 1.5-yr-old trees, either well watered or drought treated for 1 month, were transferred to separate gas-exchange chambers and the temperature gradually increased from 25°C to 40°C over a 10 d period. Continuous whole-tree shoot and root gas-exchange measurements were supplemented by primary metabolite analysis. Elevated [CO2 ] reduced tree water loss, reflected in lower stomatal conductance, resulting in a higher water-use efficiency throughout amplifying heat stress. Net carbon uptake declined strongly, driven by increases in respiration peaking earlier in the well-watered (31-32°C) than drought (33-34°C) treatments unaffected by growth [CO2 ]. Further, drought altered the primary metabolome, whereas the metabolic response to [CO2 ] was subtle and mainly reflected in enhanced root protein stability. The impact of elevated [CO2 ] on tree stress responses was modest and largely vanished with progressing heat and drought. We therefore conclude that increases in atmospheric [CO2 ] cannot counterbalance the impacts of hot drought extremes in Aleppo pine
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16471