Enhancement of endogenous SA accumulation improves poor-nutrition stress tolerance in transgenic tobacco plants overexpressing a SA-binding protein gene

Copyright © 2019 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 292(2020) vom: 01. März, Seite 110384
1. Verfasser: Li, Qian (VerfasserIn)
Weitere Verfasser: Jin, Chao, Wang, Gang, Ji, Jing, Guan, Chunfeng, Li, Xiaozhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Phytohormones Poor-nutrition stress Salicylic acid Tobacco Transcriptome analysis Plant Proteins SABP2 protein, Nicotiana tabacum EC 3.1. Esterases mehr... EC 3.1.- Salicylic Acid O414PZ4LPZ
LEADER 01000caa a22002652c 4500
001 NLM306010429
003 DE-627
005 20250226161831.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2019.110384  |2 doi 
028 5 2 |a pubmed25n1019.xml 
035 |a (DE-627)NLM306010429 
035 |a (NLM)32005389 
035 |a (PII)S0168-9452(19)31557-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Qian  |e verfasserin  |4 aut 
245 1 0 |a Enhancement of endogenous SA accumulation improves poor-nutrition stress tolerance in transgenic tobacco plants overexpressing a SA-binding protein gene 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2020 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2019 Elsevier B.V. All rights reserved. 
520 |a Salicylic acid (SA) plays an important role in the response of plants to abiotic stresses. Starvation stress affects plant cell metabolic activities, which further limits the normal growth and development of plants. It was reported that SA might play a regulatory role in the process of plant against starvation stress, but the mechanism involved in this process is still unclear. Thus, in this study, the transgenic plants overexpressing a SA binding protein 2 (SABP2) gene were exposed to starvation stress and the transgenic lines showed starvation-tolerant phenotype. Compared with wild-type (WT) plants, transgenic plants showed better growth status under poor-nutrition stress. Transgenic plants also showed more vigorous roots than WT plants. Physiological tests indicated that the transgenic plants showed higher relative water content (RWC), chlorophyll content, photosynthetic capacity, endogenous SA content, and lower ROS level compared to WT plants. Transcriptome analysis of tobacco plants identified 3, 748 differentially expressed genes (DEGs) between transgenic and WT plants under starvation stress. These DEGs are mainly involved in glycolysis/gluconeogenesis pathway group, MAPK signaling pathway group and plant hormone signal transduction pathway group. As determined by qPCR, up-regulated expression of fifteen genes such as abscisic acid receptor PYR1-like gene (NtPYR1-like), bidirectional sugar transporter N3-like gene (NtSWEETN3-like) and superoxide dismutase [Fe] chloroplastic-like gene (NtFeSOD-like), etc., was observed in transgenic plants under poor-nutrition stress which was in accordance with RNA-sequencing results. The modified pathways involved in plant hormone signaling are thought to be at least one of the main causes of the increased starvation tolerance of transgenic tobacco plants with altered SA homeostasis 
650 4 |a Journal Article 
650 4 |a Phytohormones 
650 4 |a Poor-nutrition stress 
650 4 |a Salicylic acid 
650 4 |a Tobacco 
650 4 |a Transcriptome analysis 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a SABP2 protein, Nicotiana tabacum  |2 NLM 
650 7 |a EC 3.1.  |2 NLM 
650 7 |a Esterases  |2 NLM 
650 7 |a EC 3.1.-  |2 NLM 
650 7 |a Salicylic Acid  |2 NLM 
650 7 |a O414PZ4LPZ  |2 NLM 
700 1 |a Jin, Chao  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Ji, Jing  |e verfasserin  |4 aut 
700 1 |a Guan, Chunfeng  |e verfasserin  |4 aut 
700 1 |a Li, Xiaozhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 292(2020) vom: 01. März, Seite 110384  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnas 
773 1 8 |g volume:292  |g year:2020  |g day:01  |g month:03  |g pages:110384 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2019.110384  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 292  |j 2020  |b 01  |c 03  |h 110384