Following the evolution of excited states along photochemical reaction pathways

© 2020 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 41(2020), 12 vom: 05. Mai, Seite 1156-1164
1. Verfasser: Campetella, Marco (VerfasserIn)
Weitere Verfasser: Sanz García, Juan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article NTO TD-DFT overlap photochemical reactions state-tracking
LEADER 01000naa a22002652 4500
001 NLM305995804
003 DE-627
005 20231225122402.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26162  |2 doi 
028 5 2 |a pubmed24n1019.xml 
035 |a (DE-627)NLM305995804 
035 |a (NLM)32003908 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Campetella, Marco  |e verfasserin  |4 aut 
245 1 0 |a Following the evolution of excited states along photochemical reaction pathways 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley Periodicals, Inc. 
520 |a Analyzing the behavior of potential energy surfaces (PESs) of diabatic excited states (ESs) becomes of crucial importance for a complete understanding of complex photochemical reactions. Since the definition of a compact representation for the transition density matrix, the use of the natural transition orbitals (NTOs) has become a routine practice in time-dependent density functional theory calculations. Their popularity has remarkably grown due to its simple orbital description of electronic excitations. Indeed, very recently, we have presented a new formalism used for the optimization of ESs by tracking the state of interest computing the NTO's overlap between consecutive steps of the procedure. In this new contribution, we generalize the use of this NTO's overlap-based state-tracking formalism for the analysis of all the desired diabatic states along any chemical reaction pathway. Determining the PES of the different diabatic states has been automatized by developing an extension of our recently presented algorithm, the so-called SDNTO: "Steepest Descent minimization using NTOs." This automatized overlap-based procedure allows an agile and convenient analysis of the evolution of the ESs avoiding the intrinsic ambiguity of visualizing orbitals or comparing physical observables. The analysis of two photochemical reactions of the same nature with different PES landscapes perfectly illustrates the utility of this new tool 
650 4 |a Journal Article 
650 4 |a NTO 
650 4 |a TD-DFT 
650 4 |a overlap 
650 4 |a photochemical reactions 
650 4 |a state-tracking 
700 1 |a Sanz García, Juan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 41(2020), 12 vom: 05. Mai, Seite 1156-1164  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:12  |g day:05  |g month:05  |g pages:1156-1164 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 12  |b 05  |c 05  |h 1156-1164