|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM305932179 |
003 |
DE-627 |
005 |
20231225122238.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/mrc.5004
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1019.xml
|
035 |
|
|
|a (DE-627)NLM305932179
|
035 |
|
|
|a (NLM)31997384
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Carvalho, José P
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Separation of quadrupolar and paramagnetic shift interactions with TOP-STMAS/MQMAS in solid-state lighting phosphors
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
|
520 |
|
|
|a A new approach for processing satellite-transition magic-angle spinning (STMAS) and multiple-quantum magic-angle spinning (MQMAS) data, based on the two-dimensional one-pulse (TOP) method, which separates the second-rank quadrupolar anisotropy and paramagnetic shift interactions via a double shearing transformation, is described. This method is particularly relevant in paramagnetic systems, where substantial inhomogeneous broadening may broaden the lineshapes. Furthermore, it possesses an advantage over the conventional processing of MQMAS and STMAS spectra because it overcomes the limitation on the spectral width in the indirect dimension imposed by rotor synchronization of the sampling interval. This method was applied experimentally to the 27 Al solid-state nuclear magnetic resonance of a series of yttrium aluminum garnets (YAGs) doped with different lanthanide ions, from which the quadrupolar parameters of paramagnetically shifted and bulk unshifted sites were extracted. These parameters were then compared with density functional theory calculations, which permitted a better understanding of the local structure of Ln substituent ions in the YAG lattice
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a DFT
|
650 |
|
4 |
|a MQMAS
|
650 |
|
4 |
|a STMAS
|
650 |
|
4 |
|a TOP
|
650 |
|
4 |
|a inorganic phosphors
|
650 |
|
4 |
|a paramagnetic NMR
|
650 |
|
4 |
|a solid-state NMR
|
700 |
1 |
|
|a Jaworski, Aleksander
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brady, Michael J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pell, Andrew J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Magnetic resonance in chemistry : MRC
|d 1985
|g 58(2020), 11 vom: 30. Nov., Seite 1055-1070
|w (DE-627)NLM098179667
|x 1097-458X
|7 nnns
|
773 |
1 |
8 |
|g volume:58
|g year:2020
|g number:11
|g day:30
|g month:11
|g pages:1055-1070
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/mrc.5004
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 58
|j 2020
|e 11
|b 30
|c 11
|h 1055-1070
|