Probability distributions of nonstructural carbon ages and transit times provide insights into carbon allocation dynamics of mature trees

©2020 The Authors. New Phytologist ©2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 226(2020), 5 vom: 15. Juni, Seite 1299-1311
1. Verfasser: Herrera-Ramírez, David (VerfasserIn)
Weitere Verfasser: Muhr, Jan, Hartmann, Henrik, Römermann, Christine, Trumbore, Susan, Sierra, Carlos A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't carbon ages and transit times carbon allocation modeling nonstructural carbohydrates tree carbon dynamics tree storage dynamics Carbon 7440-44-0
Beschreibung
Zusammenfassung:©2020 The Authors. New Phytologist ©2020 New Phytologist Trust.
●In trees, the use of nonstructural carbon (NSC) under limiting conditions impacts the age structure of the NSC pools. We compared model predictions of NSC ages and transit times for Pinus halepensis, Acer rubrum and Pinus taeda, to understand differences in carbon (C) storage dynamics in species with different leaf phenology and growth environments. ●We used two C allocation models from the literature to estimate the NSC age and transit time distributions, to simulate C limitation, and to evaluate the sensitivity of the mean ages to changes in allocation fluxes. ●Differences in allocation resulted in different NSC age and transit time distributions. The simulated starvation flattened the NSC age distribution and increased the mean NSC transit time, which can be used to estimate the age of the NSC available and the time it would take to exhaust the reserves. Mean NSC ages and transit times were sensitive to C fluxes in roots and allocation of C from wood storage. ●Our results demonstrate how trees with different storage traits are expected to react differently to starvation. They also provide a probabilistic explanation for the 'last-in, first-out' pattern of NSC mobilization from well-mixed C pools
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16461