Physics-Based Generative Adversarial Models for Image Restoration and Beyond

We present an algorithm to directly solve numerous image restoration problems (e.g., image deblurring, image dehazing, and image deraining). These problems are ill-posed, and the common assumptions for existing methods are usually based on heuristic image priors. In this paper, we show that these pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 7 vom: 04. Juli, Seite 2449-2462
1. Verfasser: Pan, Jinshan (VerfasserIn)
Weitere Verfasser: Dong, Jiangxin, Liu, Yang, Zhang, Jiawei, Ren, Jimmy, Tang, Jinhui, Tai, Yu-Wing, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM305913662
003 DE-627
005 20231225122215.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.2969348  |2 doi 
028 5 2 |a pubmed24n1019.xml 
035 |a (DE-627)NLM305913662 
035 |a (NLM)31995475 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Jinshan  |e verfasserin  |4 aut 
245 1 0 |a Physics-Based Generative Adversarial Models for Image Restoration and Beyond 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an algorithm to directly solve numerous image restoration problems (e.g., image deblurring, image dehazing, and image deraining). These problems are ill-posed, and the common assumptions for existing methods are usually based on heuristic image priors. In this paper, we show that these problems can be solved by generative models with adversarial learning. However, a straightforward formulation based on a straightforward generative adversarial network (GAN) does not perform well in these tasks, and some structures of the estimated images are usually not preserved well. Motivated by an interesting observation that the estimated results should be consistent with the observed inputs under the physics models, we propose an algorithm that guides the estimation process of a specific task within the GAN framework. The proposed model is trained in an end-to-end fashion and can be applied to a variety of image restoration and low-level vision problems. Extensive experiments demonstrate that the proposed method performs favorably against state-of-the-art algorithms 
650 4 |a Journal Article 
700 1 |a Dong, Jiangxin  |e verfasserin  |4 aut 
700 1 |a Liu, Yang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiawei  |e verfasserin  |4 aut 
700 1 |a Ren, Jimmy  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
700 1 |a Tai, Yu-Wing  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 7 vom: 04. Juli, Seite 2449-2462  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:7  |g day:04  |g month:07  |g pages:2449-2462 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.2969348  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 7  |b 04  |c 07  |h 2449-2462