|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM305822969 |
003 |
DE-627 |
005 |
20231225122018.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/eraa047
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1019.xml
|
035 |
|
|
|a (DE-627)NLM305822969
|
035 |
|
|
|a (NLM)31985788
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Kun-Hsiang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.05.2021
|
500 |
|
|
|a Date Revised 10.05.2021
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a Nitrate, the major source of inorganic nitrogen for plants, is a critical signal controlling nutrient transport and assimilation and adaptive growth responses throughout the plant. Understanding how plants perceive nitrate and how this perception is transduced into responses that optimize growth are important for the rational improvement of crop productivity and for mitigating pollution from the use of fertilizers. This review highlights recent findings that reveal key roles of cytosolic-nuclear calcium signalling and dynamic protein phosphorylation via diverse mechanisms in the primary nitrate response (PNR). Nitrate-triggered calcium signatures as well as the critical functions of subgroup III calcium-sensor protein kinases, a specific protein phosphatase 2C, and RNA polymerase II C-terminal domain phosphatase-like 3 are discussed. Moreover, genome-wide meta-analysis of nitrate-regulated genes encoding candidate protein kinases and phosphatases for modulating critical phosphorylation events in the PNR are elaborated. We also consider how phosphoproteomics approaches can contribute to the identification of putative regulatory protein kinases in the PNR. Exploring and integrating experimental strategies, new methodologies, and comprehensive datasets will further advance our understanding of the molecular and cellular mechanisms underlying the complex regulatory processes in the PNR
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Meta-Analysis
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Calcium signalling
|
650 |
|
4 |
|a nitrate signalling
|
650 |
|
4 |
|a primary nitrate response
|
650 |
|
4 |
|a protein kinase
|
650 |
|
4 |
|a protein phosphatase
|
650 |
|
4 |
|a transcription factor
|
650 |
|
7 |
|a Nitrates
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Calcium
|2 NLM
|
650 |
|
7 |
|a SY7Q814VUP
|2 NLM
|
700 |
1 |
|
|a Diener, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Ziwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Cong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sheen, Jen
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 71(2020), 15 vom: 25. Juli, Seite 4428-4441
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:71
|g year:2020
|g number:15
|g day:25
|g month:07
|g pages:4428-4441
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/eraa047
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 71
|j 2020
|e 15
|b 25
|c 07
|h 4428-4441
|